This page was last edited at: 2025/10/05 22:53
For learning image processing using Fiji and Jython scripting, go to excellent tutorials written by Albert Cardona, such as here on his website or here on ImageJ.net. The former is in a tutorial style, so if you want to learn scripting using Jython, that's where you go. Recently, there has been a perfect tutorial page for real beginners: here (UVA Research Computing Learning Portal).
This page is like a cookbook: there are no details about how to do programming, but more centered on how to use the Classes built into ImageJ and its plugins. This is because the style each algorithm is implemented is not consistent (they are written by 1000 different people!), so it takes a while to figure out how to use them when we are writing a bioimage analysis workflow. Examples below show how they are used in Jython scripts, to save us time for reading the source code of each.
HOW TO USE: This page is not intended for reading from top to bottom. Just search this page (e.g. command-f or ctrl-f) for the term you are looking for. This cookbook is a single page, so this allows the full search of the whole book (a single-page “book”…)!
Other resources:
The Jython book "The Definitive Guide to Jython": it's saying that the book is a version from 2009, but the latest commit is in Oct. 2018.
A way to run a Jython script from the Jython interpreter, interactively.
#simply do
>>> execfile('path/to/script.py')
#if you want to have global variables returned, then
>>> paras = {}
>>> execfile('path/to/script.py', paras)
>>> print paras
# ... you will see that the objects retained in global variable
# as dictionary key-value pair. You could then get for example
>>> imp_returned = paras['imp']
Of course, you could do this by clicking 'run' for scripts opened in script editor as well, but in this way, you could still interact with the objects created by the execfile.
Java normally uses signed values, but images are generally not signed (for 8-bit and 16-bit images). For this reason, when you work with images as a single array, there will be some need for conversion between signed values to unsigned values, and vice versa. In Jython, one could use functions in struct. Below is an example of converting an 8-bit pixel array extracted from an image to unsigned 8-bit values.
from ij import IJ
import struct
def s2u8bit(v):
return struct.unpack("B", struct.pack("b", v))[0]
imp = IJ.getImage()
signedpix = imp.getProcessor().getPixels()
pix = map(s2u8bit,signedpix)
# Check that the conversion worked.
# This example was made for a binary image, to print only values 255
for j in range(len(pix)):
curval = pix[j]
#curval = s2u8bit(curval)
if curval is 0:
print '--'
else:
print curval
Here is another example of going back and forth between signed and unsigned values. The scripts load “blobs.gif” example image from the NIH server, then replace pixels with values between 50 and 200 to 0. A kind of density slicing workflow.
from ij import IJ
import jarray
imp = IJ.openImage("http://imagej.nih.gov/ij/images/blobs.gif")
imp.show()
# ImageProcessor.getPixels() returns an array of signed pixel values
signedpix = imp.getProcessor().getPixels()
# converting signed pixel values to unsigned using bitwise operation.
# & 0xff : 8bit
# & 0xffff : 16bit
# & 0xffffffff : 32bit
unsignedpix = map(lambda p: p & 0xff, signedpix)
# replace pixels with value more than 50 and less than 200 to 0.
replaced_unsignedpix = map(lambda p: p if (p < 200) and (p > 50) else 0, unsignedpix)
# convert signed pixel values to unsigned.
replaced_signedpix = map(lambda p: (p - 256) if p > 127 else p, replaced_unsignedpix)
# python array to java array.
jreplaced_signedpix = jarray.array(replaced_signedpix, 'b')
imp.getProcessor().setPixels(jreplaced_signedpix)
imp.updateAndDraw()
Same processing could be also done by replacing L7 to L23 by
for j in range(imp.getHeight()):
#@ ScriptService scriptService
fullscript = "#@ String A_STRING\n" + \
"#@ Boolean (label='An Option', value=true) OPTION"
scriptmodule = scriptService.run(".py", fullscript, True).get()
scriptInputmaps = scriptmodule.getInputs()
print scriptmodule.getOutputs()
print scriptInputmaps
# how can we know the dialog was Canceled?
print scriptmodule.isInputResolved('A_STRING')
from ij.io import OpenDialog
op = OpenDialog("Choose Track Data...", "")
print op.getDirectory()+ op.getFileName()
from ij import IJ imp = IJ.getImage() print imp.getOriginalFileInfo().directory
… can also be done by IJ.getDirectory("image"), but with this IJ method, one cannot specify the target ImagePlus object. See also the source code of IJ.getDirectory
Be careful not to mix with the usage of getFileInfo. This does not hold directory information.
Here is an example, using re package. To construct pattern, several web services are available such as:
http://www.pythonregex.com/
or
https://regex101.com/
import re
filename = '/Volumes/data/0076-14--2006-01-23/data/--W00088--P00001--Z00000--T00000--nucleus-dapi.tif'
#filename = '--W00088--P00001--Z00000--T00000--nucleus-dapi.tif'
pattern = re.compile('(.*)--W(.*)--P(.*)--Z(.*)--T(.*)--(.*)\.(.*)')
res = re.search(pattern, filename)
basename = res.group(1)
spot = res.group(2)
position = res.group(3)
zpos = res.group(4)
tpos = res.group(5)
imgtype = res.group(6)
filetype = res.group(7)
print 'prefix', basename
print 'spot', spot
print 'position', position
Four ways to open image
from ij import IJ, ImagePlus from ij.io import Opener srcpath = '/tt/img.tif' # uisng constructor imp1 = ImagePlus(srcpath) # using IJ static method imp2 = IJ.openImage(srcpath) # Using Opener class imp3 = Opener().openImage(srcpath) # using LOCI BioFormats from loci.plugins import BF # returned is an array of ImagePlus, in many cases just one imp. imps = BF.openImagePlus(src) imp4 = imps[0]
To know image pixel resolution, TiffDecoder class is useful as it does not load image data. For big images this is important since getting image properties would be much faster.
from ij.io import TiffDecoder # using 'mitosis (5d)' sample image. directory = '/tmp/examples/' filename = 'mitosis.tif' td = TiffDecoder(directory, filename) imginfos = td.getTiffInfo() print 'Resolution: ', imginfos[0].unit, '/ pixel' print 'x resoluition:', imginfos[0].pixelWidth print 'y resoluition:', imginfos[0].pixelHeight # to print various image parameters print imginfos[0].description print '---' # to print imgage optional info print imginfos[0].info
To extract file name and file name without extension,
import os srcpath = '/Users/miura/tmp/data.csv' filename = os.path.basename(srcpath) print filename #prints data.csv parentdirectory = os.path.dirname(srcpath) print parentdirectory #prints /Users/miura/tmp print os.path.join(parentdirectory, filename) #prints same as srcpath #above is enough to join directory and file name, # but if you specifically want to use path separator of the os print os.sep #filename without extension print os.path.splitext(filename)[0] #prints /Users/miura/tmp/data
Alternatively, one could use File class in Java.
from java.io import File imgpath = 'Z:\\20_23h_firstSample\\20h_shifted.tif' ff = File(imgpath) print ff.getParent() print ff.getName()
Fiji comes with ApacheIO library, and can be used quite conveniently for disintegrating file paths. See Javadoc for many other convenient methods.
from org.apache.commons.io import FilenameUtils srcpath = '/Users/miura/tmp/data.csv' baseName = FilenameUtils.getBaseName(srcpath) print "Basename: ", baseName ext = FilenameUtils.getExtension(srcpath) print "Extension: ", ext filename = FilenameUtils.getName(srcpath) print "File name: ", filename pathWOext = FilenameUtils.removeExtension(srcpath) print "Fullpath without ext: ", pathWOext # outputs # # Basename: data # Extension: csv # File name: data.csv # Fullpath without ext: /Users/miura/tmp/data
path = "/Users/miura/data.txt" with open(inpath, 'r') as myfile: data = myfile.read() print data
with open("/Users/miura/Downloads/testOutput.txt", "w") as text_file:
text_file.write("The first line\nAnother line")
text_file.close()
from ij import IJ from util.opencsv import CSVReader from java.io import FileReader def readCSV(filepath): reader = CSVReader(FileReader(filepath), ",") ls = reader.readAll() for item in ls: IJ.log(item[4]) filepath = '/Users/miura/test.csv' readCSV(filepath)
WIth purely pythonic way:
import csv filepath = '/Users/miura/Dropbox/ToDo/Pavel/data.txt' f = open(filepath, 'rb') data = csv.reader(f, delimiter=' ') for row in data: print(len(row)) print ', '.join(row)
In this case, imported array is python array. to convert this to Java array, use
from jarray import array javaarray = array(pythonarray, 'type')
see here for more details.
Uses opencsv library, which is preinstalled in Fiji.
from util.opencsv import CSVWriter
from java.io import FileWriter
from java.lang.reflect import Array
from java.lang import String, Class
writer = CSVWriter(FileWriter("c:/temp/testcsv.csv"), ',')
data = Array.newInstance(Class.forName("java.lang.String"), 3)
#String[] entries = "first#second#third".split("#");
data[0] = str(11)
data[1] = str(23)
data[2] = str(5555)
writer.writeNext(data)
writer.close()
This could be rewritten in a bit more simple way using jarray module.
from util.opencsv import CSVWriter
from java.io import FileWriter
from java.lang import String
from jarray import array as jarr
writer = CSVWriter(FileWriter("/Users/miura/Desktop/eggs1.csv"), ',')
header = ['x', 'y', 'z']
jheader = jarr(header, String)
data = [11,23,5555]
datas = map(str, data)
jdata = jarr(datas, String)
writer.writeNext(jheader)
writer.writeNext(jdata)
writer.close()
… or purely in pythonic way using csv module. This example is very simple since it does not use Java array at all. If you need to use the array for some other purpose in Java classes, python array must be converted.
import csv
f = open('/Users/miura/Desktop/eggs2.csv', 'wb')
writer = csv.writer(f)
writer.writerow(['does this work'])
writer.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam'])
#can chop down more
writer.writerows(['Spam', 'Lovely Spam', 'Wonderful Spam'])
f.close()
… a bit more realistic, writing numerical data.
''' writing data to a csv file. ''' import os, csv # prepare test data to wirte to a csv file data1 = range(10) data2 = [x * x for x in data1] data3 = [pow(x, 3) for x in data1] print data3 # prepare path root = "/Users/miura/Desktop" filename = "testdata.csv" fullpath = os.path.join(root, filename) print fullpath # open the file first (if its not there, newly created) f = open(fullpath, 'wb') # create csv writer writer = csv.writer(f) # for loop to write each row for i in range(len(data1)): row = [data1[i], data2[i], data3[i]] writer.writerow(row) #writer.writerows([data1, data2, data3]) # close the file. f.close()
A simple way is to use glob package (file not loaded in this example).
import glob, os
from ij.io import DirectoryChooser
srcDir = DirectoryChooser("Choose!").getDirectory()
for filename in glob.glob(os.path.join(srcDir, "*.tif")):
print(os.path.basename(filename))
Here is a cool script written by Christian Tischer for loading image series using file prefix as dictionary keys.
from ij import IJ
from ij.io import DirectoryChooser
import os
def run():
srcDir = DirectoryChooser("Choose!").getDirectory()
IJ.log("directory: "+srcDir)
theIndex = {}
for root, directories, filenames in os.walk(srcDir):
for filename in filenames:
if not filename.endswith(".tif"):
continue
#IJ.log(filename)
treatment, well, position, z, time, channel = filename.split("--")
identifier = treatment + '--' + well + '--' + position
theIndex[identifier] = theIndex.get(identifier, []) + [time]
#IJ.log("identifier: "+identifier)
#IJ.log("time: "+time)
print(theIndex.keys())
for index in theIndex.keys():
print(index)
cmd = "Image Sequence..."
options = "open="+srcDir+" or="+index+".*--gfp.tif sort"
IJ.run(cmd, options)
run()
from ij.io import OpenDialog
from ij.io import TiffDecoder
from ij.plugin import FileInfoVirtualStack
od = OpenDialog("stack", "")
td = TiffDecoder(od.getDirectory(), od.getFileName())
info = td.getTiffInfo()
fi = info[0]
print fi.nImages
vs = FileInfoVirtualStack(fi, False)
for i in range(1,fi.nImages):
ip = vs.getProcessor(i)
print i
A bit of modification of above code allows you to view a stack as a virtual stack. Since FileInfoVirtualStack is an extended class of ImageStack, a ImagePlus can be directly created.
from ij.io import OpenDialog
from ij.io import TiffDecoder
from ij.plugin import FileInfoVirtualStack
from ij import ImagePlus
od = OpenDialog("stack", "")
td = TiffDecoder(od.getDirectory(), od.getFileName())
info = td.getTiffInfo()
fi = info[0]
print fi.nImages
vs = FileInfoVirtualStack(fi, False)
imp = ImagePlus("testVirtual", vs)
imp.show()
If you have let's say a 5D hyperstack and you want to save them as separate 2D tiff files with each file name having file_c00_t0001_z_0000.tif and so on, here is an example script.
from ij import IJ
import os
savepath = IJ.getDirectory("")
imp = IJ.getImage()
ssize = imp.getStackSize()
titleext = imp.getTitle()
title = os.path.splitext(titleext)[0]
dimA = imp.getDimensions()
for c in range(dimA[2]):
for z in range(dimA[3]):
for t in range(dimA[4]):
imp.setPosition(c+1, z+1, t+1)
print c, z, t
numberedtitle = \
title + "_c" + IJ.pad(c, 2) + \
"_z" + IJ.pad(z, 4) + \
"_t" + IJ.pad(t, 4) + ".tif"
stackindex = imp.getStackIndex(c + 1, z + 1, t + 1)
aframe = ImagePlus(numberedtitle, imp.getStack().getProcessor(stackindex))
IJ.saveAs(aframe, "TIFF", savepath + numberedtitle)
IJ.log("saved:" + numberedtitle)
This is an expaple of using regular expression to match file names, and to collect images as a ImagePlus array then convert it to a Hyperstack.
https://gist.github.com/miura/6453158
import os
import re
from ij import IJ
from ij.io import Opener
from ij.plugin import Concatenator
from jarray import array
srcpath = IJ.getFilePath('Choose the first file')
filename = os.path.basename(srcpath)
srcDir = os.path.dirname(srcpath)
#chosefile = '20130711_R1_GR001_B1_L2.lsm'
#pattern = re.compile('(.*)_R(.*)_GR(.*)_B(.*)_L(.*)\.lsm')
pattern = re.compile('(.*)_R(.*)_GR(.*)_B(.*)_L(.*)\.(.*)')
res = re.search(pattern, filename)
basename = res.group(1)
repetition = res.group(2)
grouprepetition = res.group(3)
block = res.group(4)
location = res.group(5)
extension = res.group(6)
GRlist = []
for root, directories, filenames in os.walk(srcDir):
for filename in filenames:
match = re.search(pattern, filename)
if match is not None:
#print filename, match.group(3)
GRlist.append(match.group(3))
print srcDir
print 'files: ', len(GRlist)
GRlist = sorted(GRlist)
timeseries = []
for timepoint in GRlist:
thisfile = basename + '_R' + repetition + '_GR' + timepoint + '_B' + block + '_L' + location + '.' + extension
print thisfile
imp = Opener.openUsingBioFormats(os.path.join(srcDir, thisfile))
imp.setOpenAsHyperStack(False)
timeseries.append(imp)
newname = basename + '_R' + repetition + '_B' + block + '_L' + location + '.' + extension
calib = timeseries[0].getCalibration()
dimA = timeseries[0].getDimensions()
jaimp = array(timeseries, ImagePlus)
ccc = Concatenator()
#allimp = ccc.concatenateHyperstacks(jaimp, newname, False)
allimp = ccc.concatenate(jaimp, False)
allimp.setDimensions(dimA[2], dimA[3], len(GRlist))
allimp.setCalibration(calib)
allimp.setOpenAsHyperStack(True)
allimp.show()
There are cases that you need to wait till a file is created. Below two lines does this waiting task.
while not os.path.exists(filepath): time.sleep(1)
Using IJ method.
from ij import IJ
from java.io import PrintWriter
content = IJ.openUrlAsString('http://cmci.info/imgdata/tenFrameResults.csv')
out = PrintWriter('/Users/miura/tmp/test1.csv')
out.print(content)
out.close()
Only in Java
from ij import IJ
from ij.io import Opener
from java.io import File, FileOutputStream
from java.net import URL
from java.lang import Long
from java.nio.channels import Channels
websitecsv = URL("http://cmci.info/imgdata/tenFrameResults.csv")
csvchannel = Channels.newChannel(websitecsv.openStream())
ff = File("/Users/miura/tmp/test.csv")
if not ff.exists():
ff.createNewFile()
fos = FileOutputStream(ff)
fos.getChannel().transferFrom(csvchannel, 0, Long.MAX_VALUE)
fos.close()
IJ.log("done")
JSON object can be directly created from Java Maps. Here, we use TreeMap to keep the ordering of Map elements.
from java.util import TreeMap
from org.json import JSONObject
amap = TreeMap()
amap.put("red", 0.6)
amap.put("green", 1)
amap.put("blue", 0.3)
jo = JSONObject(amap)
print str(jo)
This code yields:
{"blue":0.3,"green":1,"red":0.6}
from java.util import Date
from java.text import SimpleDateFormat
timeStamp = SimpleDateFormat("yyyy.MM.dd.HH.mm.ss").format(Date())
print timeStamp
“Array” is called “List” in python. When using list in jython, we should be very very careful whether an array (or list) is Java array or Python list: they both are set of numbers, but they sometimes require conversion. This happens especially when you want to use array in the argument of certain Java methods.
We first start with Python list (or for me is “python array”):
Two ways to append an element to a list.
a = [] a.append(1) a.append(2) print a # [1, 2] b = [] b = b + [1] b = b + [2] print b # [1, 2] #... can be also written like b = [] b += [1] b += [2] print b # [1, 2]
a = [1, 2, 3] b = [4, 5, 6] a = a + b print a
will prints
[1, 2, 3, 4, 5, 6]
in the console.
a=[1,2,3,4,5,5] a=list(set(a)) a.sort() print a
Some arguments ask for an array of a specific type. Since Python array is not Java array, one should generate a Java array. For this, you could use the jarray package.
import jarray ja = jarray.array([0, 1, 2, 3], 'i')
The second argument specifies the type.
| z | boolean |
| c | char |
| b | byte |
| h | short |
| i | int |
| l | long |
| f | float |
| d | double |
What if you want to make a java array of a specific class? You could then name the class as the second argument. For example,
import jarray from ij import IJ from ij.plugin RGBStackMerge imp1 = IJ.openImage(path1) imp2 = IJ.openImage(path2) imgarray = jarray.array([imp1, imp2], ImagePlus) colorimp = RGBStackMerge().mergeHyperstacks(imgarray, False)
To initialize a Java native 2D array (e.g. float[][]), create a Python 2D array first, then convert it to a Java 2D array using jarray. See the example code below.
import jarray
import java.lang.Class
#prepare 3x2 matrix
py2Dlist = [[float(0)]*2]*3
print(py2Dlist)
# [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]
print(type(py2Dlist))
# <type 'list'>
java2Dlist = jarray.array(py2Dlist,java.lang.Class.forName("[F"))
print (java2Dlist)
# array([F, [array('f', [0.0, 0.0]), array('f', [0.0, 0.0]), array('f', [0.0, 0.0])])
print(type(java2Dlist))
# <type 'array.array'>
print(java2Dlist[1][1])
#0.0
“java.lang.Class.forName(”[F“)” is the reflection, and the name of the Java native float class is “[F”.
Java float 2D array can also be made using jarray.zeros (like numpy.zeros). Here is an example of creating a floating-point image from 2D array.
from jarray import zeros
from ij import ImagePlus
from ij.process import FloatProcessor
#generate 200 x 100 floating point matrix
matrix2D = [zeros(100, 'f')]*200
# check the generated matrix
print(matrix2D)
#[array('f', [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ...
rows = len(matrix2D)
cols = len(matrix2D[0])
print("rows {} cols {}".format(rows, cols))
#rows 200 cols 100
# instantiate FP image
fp = FloatProcessor(matrix2D)
#check created FP image
print("image width {} height {}".format(fp.getWidth(), fp.getHeight()))
ImagePlus('fp', fp).show()
In short, as simple as:
from jarray import zeros
from ij import ImagePlus
from ij.process import FloatProcessor
matrix2D = [zeros(100, 'f')]*200
ImagePlus('fp', FloatProcessor(matrix2D)).show()
Sometimes we need to convert the type of Java array e.g. double[] to int[]. In Java we can do this by a for-loop with casting from float to int, but in Jython we can use the map function.
from ij import IJ from ij.process import StackStatistics import jarray imp = IJ.getImage() #stack stackstats = StackStatistics(imp) histD = stackstats.histogram() #double[] returned, taken as floats in python print(type(histD[0])) hist = map(int, histD) histInt = jarray.array(hist, 'i') print(type(histInt[0])) #Java int[]
from operator import itemgetter ll = [1, 2, 3, 4] ll2 = [5, 7, 8, 6] aa = sorted(zip(ll, ll2), key=itemgetter(1), reverse=True) print aa ll, ll2 = zip(*aa) print list(ll) print list(ll2) # in one line # ll, ll2 = (list(t) for t in zip(*sorted(zip(ll, ll2))))
… results in:
[(3, 8), (2, 7), (4, 6), (1, 5)] (3, 2, 4, 1) (8, 7, 6, 5)
Python fo-looping is pretty flexible.
a = [1, 2, 3, 4] b = [10, 20, 30, 40] for aa, bb in zip(a, b): c = aa + bb print c
zip command creates a list of tuples from elements of arrays a and b.
Stream-related syntax introduced from Java8 is useful for writing clear codes, but cannot be directly used in Jython. Below is a way to use StreamAPI, by introducing Jython classes implementing the Consumer interface. I took this idea from here. For the Java Stream API, this page is useful: The Java 8 Stream API Tutorial
from java.util.Arrays import asList
from java.util.function import Predicate, Consumer, Function
from java.util.stream import Collectors
from java.util import Arrays
class jc(Consumer):
def __init__(self, fn):
self.accept=fn
class jf(Function):
def __init__(self, fn):
self.apply = fn
class jp(Predicate):
def __init__(self, fn):
self.test = fn
def jprint(x):
print x
tt = ["a", "b", "c"]
c = Arrays.stream(tt).count()
print c
print "forEach printing"
Arrays.stream(tt).forEach(jc(lambda x: jprint("="+x)))
print "forEach printing parallelly"
Arrays.stream(tt).parallel().forEach(jc(lambda x: jprint("="+x)))
print "has b?", Arrays.stream(tt).anyMatch(jp(lambda x: x=="b"))
print "has z?", Arrays.stream(tt).anyMatch(jp(lambda x: x=="z"))
# convert to Java List<>
jtt = Arrays.asList(tt)
jtt.stream().forEach(jc(lambda x: jprint("+"+x)))
An example of implementing KeyListener, written by Christoph Schiklenk. This script loads a tab-delimited text file, show it in a results-table style that accepts key-press down event and loads the data in the currently selected row.
from java.awt.event import KeyEvent, KeyAdapter
from os.path import basename, splitext
path = "/Users/miura/Desktop/tmp/val_p1_c2.tsv"
filename = splitext(basename(path))[0]
# imp will be something like a global variable. accessible from
# funcitons.
imp = IJ.getImage()
def doSomething(imp, keyEvent):
""" A function to react to key being pressed on an image canvas. """
IJ.log("clicked keyCode " + str(keyEvent.getKeyCode()) + " on image " +
str(imp.getTitle()))
# Prevent further propagation of the key event:
keyEvent.consume()
class ListenToKey(KeyAdapter):
def keyPressed(this, event):
eventSrc = event.getSource()
tp = eventSrc.getParent() #panel is the parent, canvas being component.
print eventSrc
print tp
print "selected line:", tp.getSelectionEnd()
print "...", tp.getLine(tp.getSelectionEnd())
#imp = event.getSource()
doSomething(imp, event)
# - - - M A I N - - -
listener = ListenToKey()
txtfile = open(path)
tw = TextWindow("Results_" + filename, txtfile.readlines(1)[0], "", 300,
700)
for line in txtfile.readlines():
frame, dist, volChI, volChII = line.split("\t")
tw.append(str(frame) + "\t" + str(dist) + "\t" + str(volChI) + "\t" +
str(volChII))
tw.getTextPanel().addKeyListener(listener)
To pause the script processing and wait for the user input (e.g. creating amanual ROI), use WaitForUserDialog class.
from ij.gui import WaitForUserDialog
print("start")
wud = WaitForUserDialog("test: wait for user", "Click OK if you are done with your manual work")
print("waiting...")
wud.show()
print("done")
Maps are called Dictionary in Python.
To split a dictionary to key lists and value lists:
results = {'mean': 10.0, 'sd': 3.3}
headers = results.keys()
values = results.values()
print headers
print values
Getting the max number of keys, in case if the key is integer.
from java.util import HashMap, Collections tt = HashMap() tt.put(1, "1") tt.put(200, "2") tt.put(2, "2") print Collections.max(tt.keySet())
The code below grabs currently active 2D image and creates another image with additional 100 pixels at the bottom.
from ij import IJ, ImagePlus
from ij.plugin import CanvasResizer
ip = IJ.getImage().getProcessor()
cd = CanvasResizer()
bigip = cd.expandImage(ip, ip.getWidth(), ip.getHeight() + 100, 0, 0)
ImagePlus("resized", bigip).show()
In all cases shown below the image will be overwritten. If you do not want that, Duplicate image fist by
imp2 = imp.duplicate()
or
from ij.plugin import Duplicator imp2 = Duplicator().run(imp)
from ij import IJ from ij.process import ImageConverter imp = IJ.getImage() ImageConverter(imp).convertToRGB()
from ij import IJ from ij.process import ImageConverter imp = IJ.getImage() ImageConverter(imp).convertToGray8()
[Image > Color > Split Channels]
from ij import IJ from ij.plugin import ChannelSplitter imp = IJ.getImage() imps = ChannelSplitter.split(imp) imps[0].show() # Channel 1 imps[1].show() # Channel 2
[Image > Color > Merge Channels…]
from ij import ImagePlus
from ij.plugin import RGBStackMerge, RGBStackConverter
impc1 = ImagePlus("path/to/image.tif")
impc2 = ImagePlus("path/to/image.tif")
mergeimp = RGBStackMerge.mergeChannels([impc2, None, impc1, None, None, None, None], True)
# convert the composite image to the RGB image
RGBStackConverter.convertToRGB(mergeimp)
mergeimp.show()
# example script for z projection
# extracts first time point from a 4D stack and do maximum intensity Z-projection
from ij import IJ
from ij.plugin import ZProjector
from emblcmci import Extractfrom4D
def maxZprojection(stackimp):
zp = ZProjector(stackimp)
zp.setMethod(ZProjector.MAX_METHOD)
zp.doProjection()
zpimp = zp.getProjection()
return zpimp
imp = IJ.getImage()
e4d = Extractfrom4D()
e4d.setGstarttimepoint(1)
IJ.log("current time point" + str(1))
aframe = e4d.coreheadless(imp, 3)
outimp = maxZprojection(aframe)
outimp.show()
Another example with the map function
# splits multichannel-zstack hyperstack and apply zprojection from ij import IJ from ij.plugin import ZProjector from ij.plugin import ChannelSplitter def sumzp( imp ): zp = ZProjector(imp) zp.setMethod(ZProjector.SUM_METHOD) zp.doProjection() zpimp = zp.getProjection() return zpimp imp = IJ.getImage() imps = ChannelSplitter.split( imp ) zpimps = map(sumzp, imps) zpimps[0].show()
With single threshold value, pixels lower than or equal to the value will be 0 and otherwise 255.
# an example with a threshold value of 125. from ij import IJ imp = IJ.getImage() imp.getProcessor().threshold(125) imp.updateAndDraw()
With lower and upper threshold values, there is no really direct way but to convert the thresholded area to a selection (ROI), apply ROI to the image then convert it to a mask.
There is also a lower way by evaluating pixel by pixel, but this should be obvious.
# an example with lower and upper threshold values, 100 and 125.
from ij import IJ, ImagePlus
from ij.process import ImageProcessor
from ij.plugin.filter import ThresholdToSelection
imp = IJ.getImage()
imp.getProcessor().setThreshold(100, 125, ImageProcessor.NO_LUT_UPDATE)
roi = ThresholdToSelection.run(imp)
imp.setRoi(roi)
maskimp = ImagePlus("Mask", imp.getMask())
maskimp.show()
Here is an example script to create a mask from an 8-bit stack using intensity thresholding. The threshold value is derived by the Otsu algorithm using the full stack histogram.
from ij import IJ, ImagePlus, ImageStack
from ij.plugin import ChannelSplitter
from ij.process import StackStatistics
from fiji.threshold import Auto_Threshold
#imp = IJ.openImage("http://imagej.nih.gov/ij/images/confocal-series.zip")
imp = IJ.getImage()
imps = ChannelSplitter.split( imp )
imp1 = imps[0]
imp1bin = imp1.duplicate()
# get auto threshold value
stats = StackStatistics(imp1bin)
histdouble = stats.histogram()
# need this conversion from double to int
histint = map(lambda x:int(x), histdouble)
th = Auto_Threshold.Otsu(histint)
for i in range(imp1bin.getStackSize()):
ip = imp1bin.getStack().getProcessor( i + 1)
ip.threshold(th)
IJ.run(imp1bin, "Grays", "");
imp1bin.show()
To do this by accessing the pixel array of the stack, here is the way. It takes a longer time than above, so this is just to show the technique to process by pixel values using float processor pixel array object.
from ij import IJ, ImagePlus, ImageStack
from ij.plugin import ChannelSplitter
from ij.process import StackStatistics
from ij.process import FloatProcessor
from fiji.threshold import Auto_Threshold
import jarray
imp = IJ.openImage("http://imagej.nih.gov/ij/images/confocal-series.zip")
#imp = IJ.getImage()
imps = ChannelSplitter.split( imp )
imp1 = imps[0]
ww = imp1.getWidth()
hh = imp1.getHeight()
binstack = ImageStack( ww, hh)
# get auto threshold value
stats = StackStatistics(imp1)
histdouble = stats.histogram()
histint = map(lambda x:int(x), histdouble)
th = Auto_Threshold.Otsu(histint)
for i in range(imp1.getStackSize()):
slicepixA = imp1.getStack().duplicate().convertToFloat().getPixels(i + 1)
# pixmin = reduce(min, slicepixA)
# pixmax = reduce(max, slicepixA)
# print "pixvalue range:", pixmin, " - " ,pixmax
slicepixA = map(lambda x: 0.0 if x<th else 255.0, slicepixA)
fp = FloatProcessor( ww, hh, slicepixA, None)
bp = fp.convertToByteProcessor()
binstack.addSlice(str(i+1), bp)
binimp = ImagePlus("bin", binstack)
binimp.show()
Removing all ROIs from the ROI manager.
rm = RoiManager.getInstance() ht = rm.getList() ht.removeAll()
which is equivalent to
rm = RoiManager.getInstance()
rm.runCommand('reset')
Loading image silently and do multiple measurements for all ROIs, without showing the RoiManager associated dialog. In other words, the silent version of macro command:
roiManager("Multi Measure")
# loading an image from the imagej site
# if you want to load an image from local, replace the URL with a file path
imp = ImagePlus('http://imagej.nih.gov/ij/images/boats.gif')
# uncomment the following line if you want to see the image
#imp.show()
# RoiManager should be present
rm = RoiManager.getInstance()
ip = imp.getProcessor()
#rm.setVisible(False)
# Instead of multimeasure command in RoiManager, get an array of ROIs.
ra = rm.getRoisAsArray()
# loop through ROI array and do measurements.
# here is only listing mean intensity of ROIs
# if you want more, see
# http://imagej.net/ij/developer/api/ij/process/ImageStatistics.html
for r in ra:
ip.setRoi(r)
istats = ip.getStatistics()
print istats.mean
import os, jarray
from ij.plugins.frame.RoiManager
outdir = "/Users/miura/Downloads"
roizipname = "myROIs.zip"
roizippath = os.path.join(outdir, roizipname)
rm = RoiManager.getInstance()
if rm.getCount() > 0:
roiindex = jarray.array(range(0, rm.getCount()), 'i')
rm.setSelectedIndexes(roiindex)
rm.runCommand('Save', roizippath)
For combining multiple ROIs, ShapeRoi class is useful.
from ij.gui import ShaprRoi sr1 = ShapeRoi(roi1) sr2 = ShapeRoi(roi2) sr3 = sr1.or(sr2)
sr3 is then a combination of ROIs roi1 and roi2. ShapeRoi allows upi to perform logical operations between ROIs, such as AND, XOR, NOT, and so on.
[Edit > Selection > Create Selection]
Suppose that the active image is a black and white binary image, and to create a selection from black pixels and store the resulted ROI in the RoiManager, do the following.
from ij.plugin.filter import ThresholdToSelection from ij.plugin.frame import RoiManager rm = RoiManager() segimp = IJ.getImage() segimp.getProcessor().setThreshold(0, 0, ImageProcessor.NO_LUT_UPDATE) boundroi = ThresholdToSelection.run(segimp) rm.addRoi(boundroi)
The code above converts the mask to an area ROI. Sometimes, like for a skeletonized binary image, the mask needs to be converted to a segmented line ROI instead of a bounded region.
Here is the way to do this conversion. The first step is to convert the mask to a multipoint ROI. The second step is to convert this multipoint ROI to a segmented line ROI.
''''
conversion of mask (skeltonized) to multipoint ROI
and then to segmented ROI
'''
from ij import IJ
from ij.measure import CurveFitter
from ij.gui import PolygonRoi, Roi, PointRoi
from fiji.util import IntArray
from java.awt import Color
# convert mask (black background, white mask) to multipoint ROI
#https://github.com/fiji/Fiji_Plugins/blob/main/src/main/java/fiji/selection/Binary_to_Point_Selection.java
def Binary_to_Point_Selection(imp):
ip = imp.getProcessor()
w = ip.getWidth()
h = ip.getHeight()
x = IntArray();
y = IntArray();
for j in range(h):
for i in range(w):
if (ip.getf(i, j) > 127):
x.add(i)
y.add(j)
imp.setRoi(PointRoi(x.buildArray(), y.buildArray(), x.size()))
def getSlopeByFitting(xcoords, ycoords):
cf = CurveFitter(xcoords, ycoords)
cf.doFit(CurveFitter.STRAIGHT_LINE)
print(cf.getFormula())
slope=cf.getParams()[1]
print("slope:"+str(slope))
return slope
# avoid chaos when horizontal mask(line) is horizontal
# in such cases, points are in random positions along the line.
# sorting by x value fixes this chaos.
def sortCoordinates(xcoords, ycoords):
slope = getSlopeByFitting(xcoords, ycoords)
zipped = zip(xcoords, ycoords)
if abs(slope)<1:
sortedzip = sorted(zipped)
else:
sortedzip = sorted(zipped, key=lambda x: x[1])
return zip(*sortedzip)
imp = IJ.getImage()
Binary_to_Point_Selection(imp)
# multipoint ROI to segmented line ROI
xcoords = [aroi.x for aroi in imp.getRoi()]
ycoords = [aroi.y for aroi in imp.getRoi()]
#imp.setRoi(newRoi)
xcoords, ycoords = sortCoordinates(xcoords, ycoords)
segroi = PolygonRoi(xcoords, ycoords, len(xcoords), PolygonRoi.POLYLINE)
# interpolate segmented line ROI (sparse)
interval = 9.0
smooth = True
adjust = True
if adjust:
adjustsign = -1
else:
adjustsign = 1
poly = segroi.getInterpolatedPolygon(adjustsign*interval, smooth)
newRoi = PolygonRoi(poly,PolygonRoi.POLYLINE)
newRoi.setColor(Color.RED)
imp.setRoi(newRoi)
from ij import IJ from ij.gui import OvalRoi, Overlay imp = IJ.getImage() roi = OvalRoi(170, 160, 22, 22) roi.setPosition(19) ol = Overlay() ol.add(roi) imp.setOverlay(ol) ol.setStrokeWidth(2)
To export ROIs as a vector drawing for use in other applications (e.g. PDF, Adobe Illustrator), one way is to export them in SVG format. This file format is nothing more than text (XML), so it's pretty good for programmatically using it to export ImageJ ROIs. Johannes Schindeline once even suggested to export ROIs using ImageJ Macro by directly writing texts in SVG format.
The code below uses a free library called jfreeSVG from Jfreechart group. This is a separate package not included in jfreechart so it should be downloaded and installed in Fiji (jfreechart is included in Fiji package). Javadoc for jfreeSVG is here.
For more details about SVG format, see here.
import sys from java.awt import Color from java.io import File from ij import IJ from ij.gui import ShapeRoi from ij.plugin.frame import RoiManager from org.jfree.graphics2d.svg import SVGGraphics2D, SVGUtils imp = IJ.getImage() rm = RoiManager.getInstance() if rm is None: print 'None' sys.exit() # convert ROIs in RoiManager to an array of shapeRois jrois = rm.getRoisAsArray() srois = [ShapeRoi(jroi) for jroi in jrois] # http://www.jfree.org/jfreesvg/javadoc/ g2 = SVGGraphics2D(imp.getWidth(), imp.getHeight()) g2.setPaint(Color.BLACK) px = 0.0 py = 0.0 for sroi in srois: g2.translate(px*-1, py*-1) px = sroi.getBounds().x py = sroi.getBounds().y g2.translate(px, py) g2.draw(sroi.getShape()) se = g2.getSVGElement() # writing the file path = "/Users/miura/tmp/testsvg3.svg" SVGUtils.writeToSVG(File(path), se)
One problematic aspect of ROIs are that they could be various, such as lines, rectangles, ovals and polygons. In SVG these different types of ROIs should be treated as different shapes (use different tags). jfreeSVG allows to draw various shapes just by passing java.awt.Shape object, so we do not have to deal with different ROI types in ImageJ and can be moderately generic: IJ ROIs can be converted to IJ ShapeRoi object, which can then be directly converted to java.awt.Shape class.
There are other IJ plugins implementing SVG access. I tried IJ1ROIsToSVGFileWriter, a class in plugin Slide Set. It works for simple ROIs like Rect. ROIs, but for polygons it returns out of memory errors.
There is also plugin ScienFig which should have some SVG export methods implemented but have not looked at it in depth.
In the legacy “Brightness/Contrast” GUI, there is a button labeled “Auto” which calculates the minimum and the maximum pixel values for enhancing contrast of the current image (the GUI then updates the LUT accordingly). Following are the steps how these values are found out.
Explanation in human language: this algorithm first determines two values “limit” and “Threshold”.
“Threshold” is the parameter that actually sets the min and the max of the contrast curve for the automatic enhancement. Starting from the lowest pixel value (0) or the highest value (255), the algorithm determines the number of pixels with that pixel value. If the number exceeds 0.02% of total pixel number, then that pixel value becomes wither the min or the max for enhancing the contrast. For this decision to ignore background pixels, the algorithm also needs to have another decision determining the background pixel value.
“limit” actually is a fixed number for each image to decide which of black (0) or white (255) is the background. If the number of pixels with current pixel value is more than 10% of total pixel number, then that value is considered to be the background of the image. For example, when the number of pixels with the value of 0 is 15%, then pixels with 0 values are background. In the next step, if pixels with the value of 1 are still over 10% like 11%, then pixels with values ⇐ 1 are background. When the background is white, then similar decision takes place in the second loop.
The Jython script shown below is the re-written version based on original Java code. You could see the Java code of method “autoadjust” in the git repo, line 780-829.
# rewriting "Auto contrast adjustment" button of "Brightness/Contrast"
# Kota Miura
# 20120515
autoThreshold = 0
AUTO_THRESHOLD = 5000
imp = IJ.getImage()
cal = imp.getCalibration()
imp.setCalibration(None)
stats = imp.getStatistics() # get uncalibrated stats
imp.setCalibration(cal)
limit = int(stats.pixelCount/10)
histogram = stats.histogram #int[]
if autoThreshold<10:
autoThreshold = AUTO_THRESHOLD
else:
autoThreshold /= 2
threshold = int(stats.pixelCount/autoThreshold) #int
print "pixelCount", stats.pixelCount
print "threshold", threshold
print "limit", limit
i = -1
found = False
count = 0 # int
while True:
i += 1
count = histogram[i]
if count>limit:
count = 0
found = count> threshold
if found or i>=255:
# if 0 not in (!found, i<255) :
break
hmin = i #int
i = 256
while True:
i -= 1
count = histogram[i]
if count>limit:
count = 0
found = count> threshold
if found or i<1:
# if 0 not in (!found, i<255) :
break
hmax = i #int
print "minimum", hmin
print "maximum", hmax
Lines 17-18 seems to be not accessed at all, and seems to be not required.
Here is the same written in ImageJ macro language.
AUTO_THRESHOLD = 5000;
getRawStatistics(pixcount);
limit = pixcount/10;
threshold = pixcount/AUTO_THRESHOLD;
nBins = 256;
getHistogram(values, histA, nBins);
i = -1;
found = false;
do {
counts = histA[++i];
if (counts > limit) counts = 0;
found = counts > threshold;
}while ((!found) && (i < histA.length-1))
hmin = values[i];
i = histA.length;
do {
counts = histA[--i];
if (counts > limit) counts = 0;
found = counts > threshold;
} while ((!found) && (i > 0))
hmax = values[i];
setMinAndMax(hmin, hmax);
print(hmin, hmax);
In the example below, the code counts pixels with a value of 100. List comprehensions are a bit cryptic, but by getting use to it, it avoids looping.
from ij import IJ imp = IJ.getImage() pixval = 100 count = 0 ips = [imp.getStack().getProcessor(i + 1).getPixels() for i in range(imp.getStackSize())] ipl = [p for pvals in ips for p in pvals] count = len(filter(lambda x: x==pixval, ipl)) print "pixval=", pixval, " count:", count
To separately set min/max displayed pixel values, add the 3rd argument in setMinAndMax methods of ImageProcessor (in fact, this will be ColorProcessor).
from ij import IJ imp = IJ.getImage() stk = imp.getStack() for i in range(stk.getSize()): ip = stk.getProcessor(i + 1) # red channel = 4 ip.setMinAndMax(46, 301, 4) # green channel = 2 ip.setMinAndMax(29, 80, 2) # blue channel = 1 ip.setMinAndMax(29, 80, 1) imp.updateAndDraw()
Translation of image using ImgLib2 affine transform, taking “flybrain” sample image as an example. A work of Christian Tischer with advices from Stephan Saalfeld.
from ij import IJ, ImagePlus, Prefs from net.imglib2.img.imageplus import ImagePlusImgs from net.imglib2.view import Views from net.imglib2.realtransform import RealViews, Translation3D from net.imglib2.interpolation.randomaccess import NLinearInterpolatorFactory from net.imglib2.img.display.imagej import ImageJFunctions # get fly brain sample image imp = ImagePlus(Prefs.getImagesURL() + "flybrain.zip") # display the image before translation imp.show() # convert ImagePlus to Img img = ImagePlusImgs.from(imp) # any different to the method above? print img # prepare image for translation using interpolation: padding extended = Views.extendBorder(img) # prepare image for translation using interpolation: interpolate the image to get continuous image interpolant = Views.interpolate(extended, NLinearInterpolatorFactory()) # translation parameters dx=100; dy=50; dz=0; # construct Translation3D object transform = Translation3D(dx, dy, dz) # transformation transformed = RealViews.affine(interpolant, transform) # crop transformed image with the interval of original image cropped = Views.interval(transformed, img) # display the image after translation in ImageJ1 frame work. ImageJFunctions.show(cropped)
With binary operations, it's important to explicitly set if the background is dark or light. In GUI this could be set by [Process > Binary > Options…] and check 'Black background'. Within scripts, you could do the same by
from ij import Prefs Prefs.blackBackground = True
For those under [Process > Binary]:
from ij.plugin.filter import Binary
imp = IJ.getImage()
ip = imp.getProcessor()
binner = Binary()
binner.setup("fill", None)
binner.run(ip)
binner.setup("erode", None)
binner.run(ip)
binner.run(ip)
binner.setup("dilate", None)
binner.run(ip)
binner.run(ip)
See the source:
[Process > Filters > Minimum], with radius 20.
from ij.plugin.filter import RankFilters imp = IJ.getImage() imp2 = imp.duplicate() rf = RankFilters() rf.rank(imp2.getProcessor(), 20, RankFilters.MIN) imp2.show()
For a radius of 2.0, following does the blurring same as GUI Gaussian Blur.
from ij.plugin.filter import GaussianBlur radius = 2.0 accuracy = 0.01 GaussianBlur().blurGaussian( imp2.getProcessor(), radius, radius, accuracy)
As this works only with single 2D image, for-looping is required to process all frames / slices in a stack. For example:
from ij.plugin.filter import GaussianBlur radius = 10.0 accuracy = 0.01 for i in range(imp2.getStackSize()): GaussianBlur().blurGaussian(imp2.getStack().getProcessor(i+1), radius, radius, accuracy)
For more explanation about this processing, see the explanation in javadoc.
Menu item [Process > Subtract Background]
from ij import IJ from ij.plugin.filter import BackgroundSubtracter imp = IJ.getImage() ip = imp.getProcessor() radius = 50.0 createBackground = False lightBackground = False useParaboloid = False doPresmooth = False correctCorners = False bs = BackgroundSubtracter() bs.rollingBallBackground(ip, radius, createBackground, lightBackground, useParaboloid, doPresmooth, correctCorners) imp.updateAndDraw()
If the image is in RGB, then use a different method (rollingBallBrightnessBackground).
For more explanation about this processing, see the explanation in javadoc.
Combined use of erosion and Image Calculator to extract contour from binary image.
from ij import IJ
from ij.plugin.filter import Binary
from ij.plugin import ImageCalculator
from ij.plugin import Duplicator
imp = IJ.getImage()
imp2 = Duplicator().run(imp)
eroder = Binary()
eroder.setup("erode", None)
eroder.run(imp2.getProcessor())
ImageCalculator().run("Subtract", imp, imp2)
The last line first argument should be added with more options to create a new image and / or to process stack. Below is an example to process all frames / slices in a stack and also create a new ImagePlus.
imp3 = ImageCalculator().run("Subtract create stack", imp, imp2)
from ij.plugin.filter import EDM
ip = IJ.getImage().getProcessor()
edm = EDM()
if ip.isBinary is False:
IJ.log("8-bit binary image (0 and 255) required.")
else:
edm.setup("watershed", None)
edm.run(ip)
Source:
Find Maxima has watershed based segmentation capability. This example segments images and then merges the segmented binary on top of the original image.
from ij.plugin import RGBStackMerge
from ij import ImagePlus, IJ
from ij.process import ImageProcessor
from ij.plugin.filter import MaximumFinder
from jarray import array
from ij import Prefs
from ij.plugin.filter import Binary
imp = IJ.getImage()
ip = imp.getProcessor()
segip = MaximumFinder().findMaxima( ip, 10, ImageProcessor.NO_THRESHOLD, MaximumFinder.SEGMENTED , False, False)
segip.invert()
segimp = ImagePlus("seg", segip)
segimp.show()
mergeimp = RGBStackMerge.mergeChannels(array([segimp, None, None, imp, None, None, None], ImagePlus), True)
mergeimp.show()
[Process > Filters > Median 3D…]
Command recorder would log
IJ.run(imp, "Median 3D...", "x=4 y=4 z=4")
This is OK, but to use the class in behind directly, below is the code written by Tiago Ferreira (see this link).
from ij import IJ
from ij import ImagePlus
from ij.plugin import Filters3D
# 1. get image
get = IJ.openImage("http://imagej.net/images/clown.jpg");
# 2. get the image stack within the ImagePlus
stack = get.getStack()
# 3. Instantiate plugin [1]
f3d = Filters3D()
# 4. Retrieve filtered stack
newStack = f3d.filter(stack, f3d.MEDIAN, 4.0, 4.0, 4.0)
# 5. Construct an ImagePlus from the stack
newImage = ImagePlus("Filtered Clown", newStack);
# 6. Display result
newImage.show()
For calculating descriptive statistics, one way is to use apache commons math library. Below is an elementary example, but more could be done: for more, see here
from org.apache.commons.math3.stat.descriptive import DescriptiveStatistics as DSS
rt = ResultsTable.getResultsTable()
area = rt.getColumnAsDoubles(rt.getColumnIndex("Area"))
print "Mean",dss.getMean()
print "Meadian",dss.getPercentile(50)
print dss
Weka has basic statistics classes under weka.experiment(especially the Class e.g. Stats), but I have not used them. I think I need weka textbook for the use of this rich resource.
JfreeChart also has statistics classes. See here. An example of detecting outliers is shown in below.
An example of applying particle analysis to a stack.
from ij import IJ, ImagePlus
from ij.plugin.filter import ParticleAnalyzer as PA
from ij.measure import ResultsTable
imp = IJ.getImage()
MAXSIZE = 10000;
MINSIZE = 100;
options = PA.SHOW_ROI_MASKS \
+ PA.EXCLUDE_EDGE_PARTICLES \
+ PA.INCLUDE_HOLES \
+ PA.SHOW_RESULTS \
rt = ResultsTable()
p = PA(options, PA.AREA + PA.STACK_POSITION, rt, MINSIZE, MAXSIZE)
p.setHideOutputImage(True)
stk = ImageStack(imp.getWidth(), imp.getHeight())
for i in range(imp.getStackSize()):
imp.setSliceWithoutUpdate(i + 1)
p.analyze(imp)
mmap = p.getOutputImage()
stk.addSlice(mmap.getProcessor())
ImagePlus("tt", stk).show()
Outlier detection based on jfree library.
from org.jfree.data.statistics import BoxAndWhiskerCalculator
#http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/BoxAndWhiskerCalculator.html
from java.util import ArrayList, Arrays
class InstBWC(BoxAndWhiskerCalculator):
def __init__(self):
pass
rt = ResultsTable.getResultsTable()
yposA = rt.getColumn(rt.getColumnIndex('x'))
xposA = rt.getColumn(rt.getColumnIndex('y'))
zposA = rt.getColumn(rt.getColumnIndex('z'))
m0A = rt.getColumn(rt.getColumnIndex('m0'))
scoreA = rt.getColumn(rt.getColumnIndex('NPscore'))
m0list = ArrayList(Arrays.asList(scoreA.tolist()))
print m0list.size()
#bwc = BoxAndWhiskerCalculator()
bwc = InstBWC()
ans = bwc.calculateBoxAndWhiskerStatistics(m0list)
#http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/BoxAndWhiskerItem.html
print ans.toString()
print ans.getOutliers()
Curve fitting using ImageJ CurveFitter class.
from ij.measure import CurveFitter import jarray #creat example data arrays xa = [1, 2, 3, 4] ya = [3, 3.5, 4, 4.5] #convert to java array jxa = jarray.array(xa, 'd') jya = jarray.array(ya, 'd') #construct a CurveFitter instance cf = CurveFitter(jxa, jya) #actual fitting #fit models: see http://rsb.info.nih.gov/ij/developer/api/constant-values.html#ij.measure.CurveFitter.STRAIGHT_LINE cf.doFit(CurveFitter.STRAIGHT_LINE) #print out fitted parameters. print cf.getParams()[0], cf.getParams()[1]
Grab currently opened 3Dviewer (Image3DUniverse instance) and control the rotation and zooming. There seems to be several ways possible, and using ij3d.behaviors.ViewPlatformTransformer seems to be convenient.
from ij3d import Image3DUniverse as i3d from javax.vecmath import Vector3d as v3d import sys from javax.media.j3d import Transform3D from ij3d.behaviors import ViewPlatformTransformer import time univs = i3d.universes if univs.size() is 0: print 'no 3D viewer on desktop!' sys.exit(1) univ = univs.get(0) vtf = ViewPlatformTransformer(univ, univ) x1z1 = v3d(1, 0, 1) univ.rotateToPositiveXY() vtf.zoomTo(1000) for zm in range(1,3000, 10): vtf.zoomTo(zm) vtf.rotate(x1z1, 0.03) time.sleep(0.01) for zm in range(3000, 1000, -10): vtf.zoomTo(zm) vtf.rotate(x1z1, 0.03) time.sleep(0.01)
Controlling animations of time series movie.
from ij3d import Image3DUniverse as i3d import sys univs = i3d.universes if univs.size() is 0: print 'no 3D viewer on desktop!' sys.exit(1) univ = univs.get(0) tl = univ.getTimeline() tl.first() frames = tl.size() for i in range(frames): try: Thread.sleep(50) except InterruptedException, e: print 'wait error' tl.next()
Combination of aboves + saving snapshots as a stack.
# movie making, using 4D stacks and 3D viewer
from ij3d import Image3DUniverse as i3d
from javax.vecmath import Vector3d as v3d
import sys
from javax.media.j3d import Transform3D
from ij3d.behaviors import ViewPlatformTransformer
import time
univs = i3d.universes
if univs.size() is 0:
print 'no 3D viewer on desktop!'
sys.exit(1)
univ = univs.get(0)
vtf = ViewPlatformTransformer(univ, univ)
x1z1 = v3d(1, 0, 1)
tl = univ.getTimeline()
tl.first()
frames = tl.size()
rad = 0
#win = univ.getWindow()
imp = univ.takeSnapshot()
stk = ImageStack(imp.width, imp.height)
stk.addSlice(imp.getProcessor())
while rad < 4:
for i in range(frames):
time.sleep(0.05)
vtf.rotate(x1z1, 0.04)
rad += 0.03
stk.addSlice(univ.takeSnapshot().getProcessor())
time.sleep(0.05)
tl.next()
tl.first()
ImagePlus('movie', stk).show()
I often need to visualize 3D distribution of XYZ coordiantes listed in the results table in 3D viewer. Below is an example of using results from ParticleTracker 2D/3D being plotted in the 3D viewer.
For using this with orther plugins such as ObjectCounter 3D, column header names need to be replaced.
from javax.vecmath import Point3f, Color3f
from java.util import ArrayList
from ij3d import Image3DUniverse
from customnode import CustomPointMesh
rt = ResultsTable.getResultsTable()
yposA = rt.getColumn(rt.getColumnIndex('x'))
xposA = rt.getColumn(rt.getColumnIndex('y'))
zposA = rt.getColumn(rt.getColumnIndex('z'))
mesh = ArrayList()
for i in range(len(xposA)):
mesh.add(Point3f(xposA[i], yposA[i], zposA[i]))
univ = Image3DUniverse()
univ.showAttribute(Image3DUniverse.ATTRIBUTE_COORD_SYSTEM, False)
univ.show()
cm = CustomPointMesh(mesh)
cm.setColor(Color3f(0, 1, 0))
univ.addCustomMesh(cm, "points")
cm.setPointSize(3)
from loci.plugins import BF
from loci.plugins.in import ImporterOptions
filepath = "/path/to/image/my.czi"
# Options for Bioformats plugin, includeing the image path
options = ImporterOptions()
options.setOpenAllSeries(True)
options.setShowOMEXML(False)
options.setStitchTiles(False)
options.setId(filepath)
fullimps = BF.openImagePlus(options)
#fullimps now holds multiple images contained within the czi file.
# open the first one.
fullimps[0].show()
If you do not want to open all images (called sereies) in multi-image CZI files, replace
open.setOpenAllSeries(True)
with
options.setSeriesOn(seriesIndex, True)
with “sereiesIndex” being the seriesID e.g. 1 or 2 or 3 …
See here for more on metadata parsing and so on: bio-formats.py
For just knowing the number of images contained in a CZI file, you do not need to load full image (then it's faster).
from loci.formats import ImageReader r = ImageReader() filepath = '/to/my.czi' r.setId( filepath ) print r.getSeriesCount()
from loci.formats.tiff import TiffParser from loci.formats.tiff import TiffSaver from loci.common import DataTools from loci.common import RandomAccessInputStream from loci.common import RandomAccessOutputStream filepath = '/Users/miura/Desktop/test.ome.tif' # test reading out (no new lines) comment = TiffParser(filepath).getComment() print comment # replacing OME-XML xmlpath = '/Users/miura/Desktop/ometest.xml' newComment = DataTools.readFile(xmlpath) filein = RandomAccessInputStream(filepath) fileout = RandomAccessOutputStream(filepath) saver = TiffSaver(fileout, filepath) saver.overwriteComment(filein, newComment) filein.close() fileout.close()
If you are accessing from commandline, use “TiffComment” Bioformat Tool. For example,
tiffcomment test.ome.tif | xmlindent
outputs xml in your console. More on the udage of command line tools for dealing with OME-XML could be found here.
FeatureJ uses its own abstract class representing image data (imagescience.image.Image). For this, you first need to wrap ImagePlus object as Image object and do the processing.
from ij import IJ from imagescience.image import Image as FJimage from imagescience.feature import Laplacian imp = IJ.getImage() fjimg = FJimage.wrap(imp) fjimglap = Laplacian().run(fjimg, 1.0) imp2 = fjimglap.imageplus() imp2.show()
Usage of a plugin Extended Depth of Field (Easy mode) from script.
import jarray from edfgui import BasicDialog imp = IJ.getImage() ''' here need to check conditions of the image, it should not be less than - 4 pixel width - 4 pixel height - 2 slices ''' imagesize = jarray.array([imp.getHeight(), imp.getHeight()], 'i') color = imp.getType() == ImagePlus.COLOR_RGB dl = BasicDialog(imagesize, color, False) # "quality='1' topology='0' show-view='on' show-topology='off'" quality = 1 topology = 0 showview = True showtopology= False dl.parameters.setQualitySettings(quality) dl.parameters.setTopologySettings(topology) dl.parameters.show3dView = showview dl.parameters.showTopology = showtopology dl.process()
Find Connected Regions is a plugin that outputs connected regions as pixel-value-labeled image of connected regions. This function is similar to “Particle Analysis” and selecting “count masks” as output, but with a bit more capability in settings with less outputs (meaning less complex), and does even 3D connected components. Here is an example function.
def getNucLabels(segimp): fcrresults = FCR().run(segimp, True, True, True, True, True, False, False, 100, 600, 100, True) allregionimp = fcrresults.allRegions perRegionlist = fcrresults.perRegion infolist = fcrresults.regionInfo return allregionimp, perRegionlist, infolist
Returned values in the above example are:
Arguments for the run method are many, and here is what they are: <codes> run( ij.ImagePlus imagePlus, boolean diagonal, boolean imagePerRegion, boolean imageAllRegions, boolean showResults, boolean mustHaveSameValue, boolean startFromPointROI, boolean autoSubtract, double valuesOverDouble, double minimumPointsInRegionDouble, int stopAfterNumberOfRegions, boolean noUI) </code> More details of each of these setting parameters are available here. The source code is FindConnectedRegions.java within VIB.jar and could be accessed is here, which is a bit hidden as the plugin class (Find_Connected_Regions.java, in VIB_.jar) is a wrapper.
Some interesting discussions could be found in this fiji-dev thread.
Javadoc
from anisotropic_diffusion import Anisotropic_Diffusion_2D as AD
def aniso2D(imp):
ad = AD()
ad.setNumOfIterations(20)
ad.setSmoothings(10)
ad.setSaveSteps(20)
ad.setLimiterMinimalVariations(0.40)
ad.setLimiterMaximalVariations(0.90)
ad.setTimeSteps(20)
ad.setEdgeThreshold(10.0)
ad.setup("",imp)
adimp = ad.runTD(imp.getProcessor())
return adimp
imagepath = '/Volumes/D/20130305/l5c1-128.tif'
imp = IJ.openImage(imagepath)
adimp = aniso2D(imp)
adimp.show()
Training and get Probability image using ROI set as examples (labels).
from trainableSegmentation import WekaSegmentation
from ij.plugin.frame import RoiManager
from ij import IJ
from ij.io import FileSaver
imp = IJ.openImage('http://imagej.nih.gov/ij/images/blobs.gif') #blobs
weka = WekaSegmentation()
weka.setTrainingImage(imp)
rm = RoiManager(True)
rm.runCommand('Open', '/Users/miura/Desktop/tmp/RoiSetc1.zip')
roitable =rm.getROIs()
keys = roitable.keys()
for key in keys:
weka.addExample(0, roitable.get(key), 1)
rm2 = RoiManager(True)
rm2.runCommand('Open', '/Users/miura/Desktop/tmp/RoiSetc2.zip')
roitable =rm2.getROIs()
keys = roitable.keys()
for key in keys:
weka.addExample(1, roitable.get(key), 1)
if weka.trainClassifier():
weka.applyClassifier(True)
classifiedImage = weka.getClassifiedImage()
classifiedImage.show()
import weka.core.Version from weka.core import Instances from weka.core.converters import ConverterUtils print weka.core.Version().toString() pp = '/ARFFdata/' data1path = pp+ 'data1.arff' data2path = pp+ 'data2.arff' data1 = ConverterUtils.DataSource.read(data1path) data2 = ConverterUtils.DataSource.read(data2path) print "data1: ", data1.size() print "data2: ", data2.size() for i in range(data2.size()): data1.add(data2.get(i)) dataMerged = data1 print "Merged: ", dataMerged.size() # if data1 and data2 have the same size, the line below can be used. #dataMerged = Instances.mergeInstances(data1, data2) dataMargedPath = pp + "dataMerged.arff" ConverterUtils.DataSink.write(dataMargedPath, dataMerged )
from trainableSegmentation import WekaSegmentation from ij import IJ # == merging pp = '/ARFFdata/' data1path = pp+ 'data1.arff' data2path = pp+ 'data2.arff' ws = WekaSegmentation() data1 = ws.readDataFromARFF(data1path) data2 = ws.readDataFromARFF(data2path) ws.mergeDataInPlace(data1, data2) #this concatenates data2 to data2 dataBalanced = WekaSegmentation.balanceTrainingData(data1) #optional: can balance the classes ws.setLoadedTrainingData(dataBalanced) dataOutpath = pp+ 'dataBalanced.arff' ws.writeDataToARFF(dataBalanced, dataOutpath) # == now train and apply a classifier to an image if ws.trainClassifier(): imp = IJ.getImage() classifiedImage = ws.applyClassifier(imp, 0, True) classifiedImage.show()
Fiji plugin for local contrast enhancements.
from mpicbg.ij.clahe import Flat, FastFlat
def stackCLAHE2(imp):
for i in range(imp.getStackSize()):
imp.setSlice(i+1)
Flat.getInstance().run(imp, 49, 256, 3.0, None) # slow, as this will be more precise.
#Flat.getFastInstance().run(imp, 49, 256, 3.0, None, False) # FastFlat will be faster and less acculate.
imp = IJ.getImage()
stackCLAHE2(imp)
Javadoc
In case if you need to use “fast but not precise” method, use the class
Here is an example of grayscale eroding.
from mmorpho import StructureElement from mmorpho import MorphoProcessor imp = IJ.getImage() se = StructureElement(StructureElement.CIRCLE, 0, 10.0, StructureElement.OFFSET0) morph = MorphoProcessor(se) morph.erode(imp.getProcessor()) imp.updateAndDraw()
For other operations, see Javadoc
Shape smoothing by reducing the number of Fourier descriptors. The plugin page is here. The github page is here.
from ij import IJ from de.biomedical_imaging.ij.shapeSmoothing import ShapeSmoothingUtil # https://github.com/thorstenwagner/ij-shape-smoothing/blob/master/src/main/java/de/biomedical_imaging/ij/shapeSmoothing/ShapeSmoothingUtil.java imp = IJ.getImage() ss = ShapeSmoothingUtil() ss.setBlackBackground(True) # Relative proportion FDs (%) thresholdValue = 2 # FD in % or absolute number thresholdIsPercentual = True # If True, a table, containing all FDs, will be shown after processing doOutputDescriptors = False ss.fourierFilter(imp.getProcessor(), thresholdValue, thresholdIsPercentual, doOutputDescriptors)
This example uses automatic threshoulder class in Fiji. THere is also a way to use original imageJ thresholder. See here.
from fiji.threshold import Auto_Threshold imp = IJ.getImage() hist = imp.getProcessor().getHistogram() lowTH = Auto_Threshold.Otsu(hist) print lowTH # if you want to convert to mask, then imp.getProcessor().threshold(lowTH)
For the other algorithms for the automatic threshold value estimation, see the Javadoc.
Here is an example using Bernsen method.
from fiji.threshold import Auto_Local_Threshold as ALT imp = IJ.getImage() #IJ.run(imp, "Auto Local Threshold", "method=Bernsen radius=45 parameter_1=0 parameter_2=0 white"); thimp = ALT().exec(imp, "Bernsen", 45, 0, 0, False) print len(imp) imps[0].show()
Available methods are:
Returned value of the exec method is an array of object, namely ImagePlus. Array contains scaled images, if such option is selected.
Javadoc
Source
Measureing Haralick features.
Clone the project below, compile and install it as a plugin. https://github.com/miura/GLCM2
from emblcmci.glcm import GLCMtexture
from ij import IJ
imp = IJ.getImage()
glmc = GLCMtexture(1, 45, True, False)
ip = imp.getProcessor()
ip8 = ip.convertToByte(True)
glmc.calcGLCM(ip8)
resmap = glmc.getResultsArray()
pa = glmc.paramA
for p in pa:
print p, resmap.get(p)
h-dome is useful for spot detection in a noisy background. For example, see this reference. The example here uses Plugin MiToBo, a huge collection of various components.
from de.unihalle.informatik.MiToBo.core.datatypes.images import MTBImage from de.unihalle.informatik.MiToBo.morphology import HDomeTransform3D from ij import IJ imp = IJ.getImage() mtb = MTBImage.createMTBImage( imp.duplicate() ) hdome = HDomeTransform3D(mtb, 10.0) hdome.runOp() mtbdone = hdome.getResultImage() imp2 = mtbdone.getImagePlus() imp2.show()
from ij import IJ, ImagePlus from inra.ijpb.binary import BinaryImages from inra.ijpb.binary import ChamferWeights3D from inra.ijpb.data.image import Images3D from inra.ijpb.watershed import ExtendedMinimaWatershed imp = IJ.getImage() normalize = True dynamic = 2 connectivity = 6 #weights = ChamferWeights3D.fromLabel( ChamferWeights3D.BORGEFORS.toString() ) #weights = ChamferWeights3D.fromLabel( "Borgefors (3,4,5)" ) weights = ChamferWeights3D.BORGEFORS.getShortWeights() dist = BinaryImages.distanceMap( imp.getImageStack(),weights , normalize ) Images3D.invert( dist ) #public static final ImageStack extendedMinimaWatershed( ImageStack image, ImageStack mask, int dynamic, int connectivity, int outputType, boolean verbose ) # @param dynamic the maximum difference between the minima and the boundary of a basin result = ExtendedMinimaWatershed.extendedMinimaWatershed(dist, imp.getImageStack(), dynamic, connectivity, 16, False ) outimp = ImagePlus( imp.getShortTitle() + "dist-watershed", result ) outimp.show()
from ij import IJ, ImagePlus from inra.ijpb.binary import BinaryImages imp = IJ.getImage() connectivity = 6 outbitDepth = 16 outimp = BinaryImages.componentsLabeling(imp, connectivity, outbitDepth) outimp.setTitle(imp.getShortTitle() + "-labeled") outimp.show()
from ij import IJ, ImagePlus
from inra.ijpb.morphology import Reconstruction
imp = IJ.getImage() #binary image
newip = Reconstruction.killBorders(imp.getProcessor())
newimp = ImagePlus("BorderKilled", newip)
newimp.show()
3D Suite plugin allows you to process / segment / measure 3D image data. In Fiji, all 3D suite related commands are available under: Plugins > 3D >
The plugin webpage is here: 3D ImageJ Suite
The real power of 3D Suite is using it as a library from scripts and plugins. Many useful classes are implemented for processing, segmenting, and most notably measuring 3D objects.
Source codes are located under framagit:
The Javadoc I created (Core and Plugins are merged):
The code below shows how to measure spherical 3D ROI in an image. We first create 3 3D spheres and then use them for measuring the mean pixel intensity of those 3D ROIs within a synthetic gradient 3D image.
from ij import IJ, ImagePlus
from mcib3d.geom import ObjectCreator3D
from mcib3d.image3d import ImageHandler
oc3d = ObjectCreator3D(200, 200, 50)
oc3d.createSphere(50, 50, 10, 3, 1, False)
oc3d.createSphere(50, 50, 20, 3, 2, False)
oc3d.createSphere(50, 50, 30, 3, 3, False)
imp = oc3d.getPlus()
#imp.show()
obj1 = oc3d.getObject3DVoxels(1)
obj2 = oc3d.getObject3DVoxels(2)
obj3 = oc3d.getObject3DVoxels(3)
impnew = IJ.createImage("Measured", 200,200, 50, 16)
stack = impnew.getStack()
for i in range(stack.getSize()):
ip = stack.getProcessor(i + 1)
ip.setColor( i * 5 )
ip.fill()
ima = ImageHandler.wrap( impnew )
print "Obj1: ", obj1.getPixMeanValue(ima)
print "Obj2: ",obj2.getPixMeanValue(ima)
print "Obj3: ",obj3.getPixMeanValue(ima)
RidgDetection Plugin is a Hessian Matrix-based detection of linear/curved filaments, lines. Quite robust outcome. The GitHub repo is here. Measurements of the lengths of detexted lines are also a part of the plugin, but this part is not included in the code above.
from ij import IJ from ij.process import ImageConverter from ij.plugin.frame import RoiManager from ij.gui import PolygonRoi from de.biomedical_imaging.ij.steger import Lines, Position, Junctions, LinesUtil from org.apache.commons.lang3.mutable import MutableInt import jarray import java.lang.Class # parameter settings sigma = 2.8 #estimated radius of structure high = 4.0 #eigenvalue upper threshold low = 2.0 #eigenvalue lower threshold minLength = 0.0 #length filter maxLength = 0.0 #length filter doCorrectPosition = False doEstimateWidth = False doExtendLine = False mode = LinesUtil.MODE_LIGHT #white signal with black back # start processing imp = IJ.getImage() imp32=imp.duplicate() ImageConverter(imp32).convertToGray32() in_img = imp32.getProcessor() cols = in_img.getWidth() rows = in_img.getHeight() imgpxls2 = in_img.getPixels() #alredy float # prepare output data variables contours = Lines(in_img.getSliceNumber()) resultJunction = Junctions(in_img.getSliceNumber()) hnum_cont = MutableInt() # detection p = Position() p.detect_lines(imgpxls2, cols, rows, contours, \\ hnum_cont, sigma, low, high, mode, doEstimateWidth, \\ doCorrectPosition, doExtendLine, resultJunction) # visualization of results rm = RoiManager.getInstance() if (rm is None): rm = RoiManager() else: rm.reset() for c in contours: pr = PolygonRoi(c.getXCoordinates(), \\ c.getYCoordinates(), \\ PolygonRoi.POLYLINE) rm.addRoi(pr) rm.runCommand(imp, 'Show All')
This is an example script using R function to fit peak positions within intensity profile along a selected line ROI. For installation of Rserve, see here. The script uses the R package "Peaks".
The library “Peaks” only works under R version 2.x. With 3.0.1 and 3.0.2, it fails to work with an error message “#Error in .Call(“R_SpectrumSearchHighRes”, as.vector(y), …”.
from org.rosuda.REngine.Rserve import RConnection
from ij.gui import Roi, Overlay
c = RConnection()
x = c.eval("R.version.string")
print x.asString()
print c.eval("library(Peaks)").asString()
imp = IJ.getImage()
roi = imp.getRoi()
if roi.getType() == Roi.LINE:
print "a line roi"
profile = roi.getPixels()
c.assign("prof", profile)
pks = c.eval("SpectrumSearch(prof, sigma=1, threshold=80, background=FALSE, iterations=20, markov=TRUE, window=10)").asList()
pksX = pks[0].asIntegers()
rois = []
for i in pksX:
print roi.x1, i
rois.append(PointRoi(roi.x1, roi.y1 + i))
ol = Overlay()
for aroi in rois:
ol.add(aroi)
imp.setOverlay(ol)
c.close()
To run your custom ImageJ macro from Jython, here is an example.
from java.io import File from ij.macro import MacroRunner macropath = "/Users/miura/test.ijm" macrofile = File(macropath) mr = MacroRunner(macrofile)
Printing out ImageJ macro reserved words.
from ij.macro import MacroConstants as MC print "=== keywords ===" for f in MC.keywords: print f print "=== functions (void) ===" for f in MC.functions: print f print "=== functions (numeric) ===" for f in MC.numericFunctions: print f print "=== funcitons (string) ===" for f in MC.stringFunctions: print f print "=== functions (arrays) ===" for f in MC.arrayFunctions: print f
Here is an example of implementing PlugIn interface.
from ij.plugin import PlugIn
class GreatPlugin(PlugIn):
def __init__ (self):
print "This is GreatPlugin class which implements a java interface ij.plugin.Plugin"
def run(self):
IJ.open('http://imagej.nih.gov/ij/images/blobs.gif')
def anotherrun(self):
imp = IJ.openImage('http://imagej.nih.gov/ij/images/blobs.gif')
imp.getProcessor().invert()
imp.show()
gp = GreatPlugin()
gp.run()
gp.anotherrun()
See explanation in here.
To run Shell command in OSX, here is an example.
from java.lang import Runtime
from java.util import Scanner
def runShellCommand( cmd ):
proc = Runtime.getRuntime().exec(cmd)
istream = proc.getInputStream()
scan = Scanner(istream).useDelimiter("\\n")
for ss in scan:
print ss
runShellCommand( "pwd" )
runShellCommand( "ls -la" )
Check if the docker daemon is running ():
from java.lang import Runtime
from java.util import Scanner
def checkDockerRunning( cmd ):
proc = Runtime.getRuntime().exec(cmd)
inputst = proc.getInputStream()
s = Scanner(inputst).useDelimiter("\\n")
if not s.hasNext():
print "Please start docker desktop!"
return False
for ss in s:
print ss
if ss.startswith("CONTAINER ID"):
return True
else:
print "Please start docker desktop!"
return False
# below is for OSX. WIth win, just "docker ps"
cmd = "/usr/local/bin/docker ps"
if checkDockerRunning( cmd ):
print "Docker running"
else:
print "Docker not running"
I closed the discussion interface below, as it became the target of spam server. Please post your comments / questions to twitter (@cmci_).