Table of Contents
Python + ImageJ, Fiji Cookbook
This page was last edited at: 2022/10/16 07:12
For learning image processing using Fiji and Jython scripting, go to excellent tutorials written by Albert Cardona, such as here in his website or here in ImageJ.net. The former is in a tutorial style so if you want to learn how to do scripting using Jython, that's the place where you go. Recently, there is a very good tutorial page for real beginners: here (UVA Research Computing Learning Portal).
This page is like a cookbook: there are no details about how to do programming, but more centered on how to use Classes built in ImageJ and its plugins. This is because the style how each algorithm is implemented is not consistent (they are written by 1000 different people!) so it takes a while to figure out how to use them when we are writing a bioimage analysis workflow. Examples below show how they are actually used in Jython scripts, to save our time for reading the source code of each.
Other resources:
The Jython book "The Definitive Guide to Jython": it's saying that the book is a version from 2009, but the latest commit is in Oct. 2018.
Jython Interpreter
A way to run jython script from jython interpreter, interactively.
#simply do >>> execfile('path/to/script.py') #if you want to have global variables returned, then >>> paras = {} >>> execfile('path/to/script.py', paras) >>> print paras # ... you will see that the objects retained in global variable # as dictionary key-value pair. You could then get for example >>> imp_returned = paras['imp']
Of course you could do this by clicking 'run' for scripts opened in script editor as well, but in this way, you could still interact with the objects created by the execfile.
Singed/Unsigned value conversions
Java normally uses signed values but images are generally not signed (for 8 bit, 16 bit images). For this reason, when you work with images as an single array, there will be some need for conversion between signed value to unsigned value, and vice versa. In Jython, one could use functions in struct. Below is an example of converting an 8-bit pixel array extracted from a image to unsigned 8-bit values.
from ij import IJ import struct def s2u8bit(v): return struct.unpack("B", struct.pack("b", v))[0] imp = IJ.getImage() signedpix = imp.getProcessor().getPixels() pix = map(s2u8bit,signedpix) #check that the conversion worked. # this example was made for binary image, to print only values 255 for j in range(len(pix)): curval = pix[j] #curval = s2u8bit(curval) if curval is 0: print '--' else: print curval
Singed/Unsigned value conversions with bitwise & operator
Here is another example of going back and forth between signed and unsigned values. The scripts load “blobs.gif” example image from NIH server, then replaces pixels with values between 50 and 200 to 0. A kind of density slicing workflow.
from ij import IJ import jarray imp = IJ.openImage("http://imagej.nih.gov/ij/images/blobs.gif") imp.show() # ImageProcessor.getPixels() returns an array of signed pixel values signedpix = imp.getProcessor().getPixels() # converting signed pixel values to unsigned using bitwise operation. # & 0xff : 8bit # & 0xffff : 16bit # & 0xffffffff : 32bit unsignedpix = map(lambda p: p & 0xff, signedpix) # replace pixels with value more than 50 and less than 200 to 0. replaced_unsignedpix = map(lambda p: p if (p < 200) and (p > 50) else 0, unsignedpix) # convert signed pixel values to unsigned. replaced_signedpix = map(lambda p: (p - 256) if p > 127 else p, replaced_unsignedpix) # python array to java array. jreplaced_signedpix = jarray.array(replaced_signedpix, 'b') imp.getProcessor().setPixels(jreplaced_signedpix) imp.updateAndDraw()
Same processing could be also done by replacing L7 to L23 by
for j in range(imp.getHeight()):
ImageJ2 / SciJava
Running a script from another script
#@ ScriptService scriptService fullscript = "#@ String A_STRING\n" + \ "#@ Boolean (label='An Option', value=true) OPTION" scriptmodule = scriptService.run(".py", fullscript, True).get() scriptInputmaps = scriptmodule.getInputs() print scriptmodule.getOutputs() print scriptInputmaps # how can we know the dialog was Canceled? print scriptmodule.isInputResolved('A_STRING')
Data IO
Getting path to a file interactively
from ij.io import OpenDialog op = OpenDialog("Choose Track Data...", "") print op.getDirectory()+ op.getFileName()
Getting the directory where the curently opened image is stored
from ij import IJ imp = IJ.getImage() print imp.getOriginalFileInfo().directory
… can also be done by IJ.getDirectory("image")
, but with this IJ method, one cannot specify target ImagePlus object. See also the source code of IJ.getDirectory
Be careful not to mix with the usage of getFileInfo
. This does not hold directory information.
Regular Expression to get meta information from file name
Here is an example, using re package. To construct pattern, several web services are available such as:
http://www.pythonregex.com/
or
https://regex101.com/
import re filename = '/Volumes/data/0076-14--2006-01-23/data/--W00088--P00001--Z00000--T00000--nucleus-dapi.tif' #filename = '--W00088--P00001--Z00000--T00000--nucleus-dapi.tif' pattern = re.compile('(.*)--W(.*)--P(.*)--Z(.*)--T(.*)--(.*)\.(.*)') res = re.search(pattern, filename) basename = res.group(1) spot = res.group(2) position = res.group(3) zpos = res.group(4) tpos = res.group(5) imgtype = res.group(6) filetype = res.group(7) print 'prefix', basename print 'spot', spot print 'position', position
Loading Image from File system.
Four ways to open image
from ij import IJ, ImagePlus from ij.io import Opener srcpath = '/tt/img.tif' # uisng constructor imp1 = ImagePlus(srcpath) # using IJ static method imp2 = IJ.openImage(srcpath) # Using Opener class imp3 = Opener().openImage(srcpath) # using LOCI BioFormats from loci.plugins import BF # returned is an array of ImagePlus, in many cases just one imp. imps = BF.openImagePlus(src) imp4 = imps[0]
Retrieving Image Properties
To know image pixel resolution, TiffDecoder class is useful as it does not load image data. For big images this is important since getting image properties would be much faster.
from ij.io import TiffDecoder # using 'mitosis (5d)' sample image. directory = '/tmp/examples/' filename = 'mitosis.tif' td = TiffDecoder(directory, filename) imginfos = td.getTiffInfo() print 'Resolution: ', imginfos[0].unit, '/ pixel' print 'x resoluition:', imginfos[0].pixelWidth print 'y resoluition:', imginfos[0].pixelHeight # to print various image parameters print imginfos[0].description print '---' # to print imgage optional info print imginfos[0].info
Path operations
To extract file name and file name without extension,
import os srcpath = '/Users/miura/tmp/data.csv' filename = os.path.basename(srcpath) print filename #prints data.csv parentdirectory = os.path.dirname(srcpath) print parentdirectory #prints /Users/miura/tmp print os.path.join(parentdirectory, filename) #prints same as srcpath #above is enough to join directory and file name, # but if you specifically want to use path separator of the os print os.sep #filename without extension print os.path.splitext(filename)[0] #prints /Users/miura/tmp/data
Alternatively, one could use File class in Java.
from java.io import File imgpath = 'Z:\\20_23h_firstSample\\20h_shifted.tif' ff = File(imgpath) print ff.getParent() print ff.getName()
Fiji comes with ApacheIO library, and can be used quite conveniently for disintegrating file paths. See Javadoc for many other convenient methods.
from org.apache.commons.io import FilenameUtils srcpath = '/Users/miura/tmp/data.csv' baseName = FilenameUtils.getBaseName(srcpath) print "Basename: ", baseName ext = FilenameUtils.getExtension(srcpath) print "Extension: ", ext filename = FilenameUtils.getName(srcpath) print "File name: ", filename pathWOext = FilenameUtils.removeExtension(srcpath) print "Fullpath without ext: ", pathWOext # outputs # # Basename: data # Extension: csv # File name: data.csv # Fullpath without ext: /Users/miura/tmp/data
Loading a textfile as String
path = "/Users/miura/data.txt" with open(inpath, 'r') as myfile: data = myfile.read() print data
Saving String as a textfile
with open("/Users/miura/Downloads/testOutput.txt", "w") as text_file: text_file.write("The first line\nAnother line") text_file.close()
Loading CSV file
from ij import IJ from util.opencsv import CSVReader from java.io import FileReader def readCSV(filepath): reader = CSVReader(FileReader(filepath), ",") ls = reader.readAll() for item in ls: IJ.log(item[4]) filepath = '/Users/miura/test.csv' readCSV(filepath)
WIth purely pythonic way:
import csv filepath = '/Users/miura/Dropbox/ToDo/Pavel/data.txt' f = open(filepath, 'rb') data = csv.reader(f, delimiter=' ') for row in data: print(len(row)) print ', '.join(row)
In this case, imported array is python array. to convert this to Java array, use
from jarray import array javaarray = array(pythonarray, 'type')
see here for more details.
Saving CSV file (data table)
Uses opencsv library, which is preinstalled in Fiji.
from util.opencsv import CSVWriter from java.io import FileWriter from java.lang.reflect import Array from java.lang import String, Class writer = CSVWriter(FileWriter("c:/temp/testcsv.csv"), ',') data = Array.newInstance(Class.forName("java.lang.String"), 3) #String[] entries = "first#second#third".split("#"); data[0] = str(11) data[1] = str(23) data[2] = str(5555) writer.writeNext(data) writer.close()
This could be rewritten in a bit more simple way using jarray module.
from util.opencsv import CSVWriter from java.io import FileWriter from java.lang import String from jarray import array as jarr writer = CSVWriter(FileWriter("/Users/miura/Desktop/eggs1.csv"), ',') header = ['x', 'y', 'z'] jheader = jarr(header, String) data = [11,23,5555] datas = map(str, data) jdata = jarr(datas, String) writer.writeNext(jheader) writer.writeNext(jdata) writer.close()
… or purely in pythonic way using csv module. This example is very simple since it does not use Java array at all. If you need to use the array for some other purpose in Java classes, python array must be converted.
import csv f = open('/Users/miura/Desktop/eggs2.csv', 'wb') writer = csv.writer(f) writer.writerow(['does this work']) writer.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam']) #can chop down more writer.writerows(['Spam', 'Lovely Spam', 'Wonderful Spam']) f.close()
… a bit more realistic, writing numerical data.
''' writing data to a csv file. ''' import os, csv # prepare test data to wirte to a csv file data1 = range(10) data2 = [x * x for x in data1] data3 = [pow(x, 3) for x in data1] print data3 # prepare path root = "/Users/miura/Desktop" filename = "testdata.csv" fullpath = os.path.join(root, filename) print fullpath # open the file first (if its not there, newly created) f = open(fullpath, 'wb') # create csv writer writer = csv.writer(f) # for loop to write each row for i in range(len(data1)): row = [data1[i], data2[i], data3[i]] writer.writerow(row) #writer.writerows([data1, data2, data3]) # close the file. f.close()
Accessing multiple files to load image sequences
Here is a cool script written by Christian Tischer for loading image series using file prefix as dictionary keys.
from ij import IJ from ij.io import DirectoryChooser import os def run(): srcDir = DirectoryChooser("Choose!").getDirectory() IJ.log("directory: "+srcDir) theIndex = {} for root, directories, filenames in os.walk(srcDir): for filename in filenames: if not filename.endswith(".tif"): continue #IJ.log(filename) treatment, well, position, z, time, channel = filename.split("--") identifier = treatment + '--' + well + '--' + position theIndex[identifier] = theIndex.get(identifier, []) + [time] #IJ.log("identifier: "+identifier) #IJ.log("time: "+time) print(theIndex.keys()) for index in theIndex.keys(): print(index) cmd = "Image Sequence..." options = "open="+srcDir+" or="+index+".*--gfp.tif sort" IJ.run(cmd, options) run()
Accessing tiff stack via Virtual Stack class
from ij.io import OpenDialog from ij.io import TiffDecoder from ij.plugin import FileInfoVirtualStack od = OpenDialog("stack", "") td = TiffDecoder(od.getDirectory(), od.getFileName()) info = td.getTiffInfo() fi = info[0] print fi.nImages vs = FileInfoVirtualStack(fi, False) for i in range(1,fi.nImages): ip = vs.getProcessor(i) print i
Viewing tiff stack as Virtual Stack
A bit of modification of above code allows you to view a stack as a virtual stack. Since FileInfoVirtualStack is an extended class of ImageStack, a ImagePlus can be directly created.
from ij.io import OpenDialog from ij.io import TiffDecoder from ij.plugin import FileInfoVirtualStack from ij import ImagePlus od = OpenDialog("stack", "") td = TiffDecoder(od.getDirectory(), od.getFileName()) info = td.getTiffInfo() fi = info[0] print fi.nImages vs = FileInfoVirtualStack(fi, False) imp = ImagePlus("testVirtual", vs) imp.show()
Saving Hyperstack as Separate 2D files
If you have let's say a 5D hyperstack and you want to save them as separate 2D tiff files with each file name having file_c00_t0001_z_0000.tif and so on, here is an example script.
from ij import IJ import os savepath = IJ.getDirectory("") imp = IJ.getImage() ssize = imp.getStackSize() titleext = imp.getTitle() title = os.path.splitext(titleext)[0] dimA = imp.getDimensions() for c in range(dimA[2]): for z in range(dimA[3]): for t in range(dimA[4]): imp.setPosition(c+1, z+1, t+1) print c, z, t numberedtitle = \ title + "_c" + IJ.pad(c, 2) + \ "_z" + IJ.pad(z, 4) + \ "_t" + IJ.pad(t, 4) + ".tif" stackindex = imp.getStackIndex(c + 1, z + 1, t + 1) aframe = ImagePlus(numberedtitle, imp.getStack().getProcessor(stackindex)) IJ.saveAs(aframe, "TIFF", savepath + numberedtitle) IJ.log("saved:" + numberedtitle)
Loading Separate Image Files as a Hyperstack
This is an expaple of using regular expression to match file names, and to collect images as a ImagePlus array then convert it to a Hyperstack.
https://gist.github.com/miura/6453158
import os import re from ij import IJ from ij.io import Opener from ij.plugin import Concatenator from jarray import array srcpath = IJ.getFilePath('Choose the first file') filename = os.path.basename(srcpath) srcDir = os.path.dirname(srcpath) #chosefile = '20130711_R1_GR001_B1_L2.lsm' #pattern = re.compile('(.*)_R(.*)_GR(.*)_B(.*)_L(.*)\.lsm') pattern = re.compile('(.*)_R(.*)_GR(.*)_B(.*)_L(.*)\.(.*)') res = re.search(pattern, filename) basename = res.group(1) repetition = res.group(2) grouprepetition = res.group(3) block = res.group(4) location = res.group(5) extension = res.group(6) GRlist = [] for root, directories, filenames in os.walk(srcDir): for filename in filenames: match = re.search(pattern, filename) if match is not None: #print filename, match.group(3) GRlist.append(match.group(3)) print srcDir print 'files: ', len(GRlist) GRlist = sorted(GRlist) timeseries = [] for timepoint in GRlist: thisfile = basename + '_R' + repetition + '_GR' + timepoint + '_B' + block + '_L' + location + '.' + extension print thisfile imp = Opener.openUsingBioFormats(os.path.join(srcDir, thisfile)) imp.setOpenAsHyperStack(False) timeseries.append(imp) newname = basename + '_R' + repetition + '_B' + block + '_L' + location + '.' + extension calib = timeseries[0].getCalibration() dimA = timeseries[0].getDimensions() jaimp = array(timeseries, ImagePlus) ccc = Concatenator() #allimp = ccc.concatenateHyperstacks(jaimp, newname, False) allimp = ccc.concatenate(jaimp, False) allimp.setDimensions(dimA[2], dimA[3], len(GRlist)) allimp.setCalibration(calib) allimp.setOpenAsHyperStack(True) allimp.show()
Wait until a file is created
There are cases that you need to wait till a file is created. Below two lines does this waiting task.
while not os.path.exists(filepath): time.sleep(1)
Downloading a CSV file from Internet and save locally
Using IJ method.
from ij import IJ from java.io import PrintWriter content = IJ.openUrlAsString('http://cmci.info/imgdata/tenFrameResults.csv') out = PrintWriter('/Users/miura/tmp/test1.csv') out.print(content) out.close()
Only in Java
from ij import IJ from ij.io import Opener from java.io import File, FileOutputStream from java.net import URL from java.lang import Long from java.nio.channels import Channels websitecsv = URL("http://cmci.info/imgdata/tenFrameResults.csv") csvchannel = Channels.newChannel(websitecsv.openStream()) ff = File("/Users/miura/tmp/test.csv") if not ff.exists(): ff.createNewFile() fos = FileOutputStream(ff) fos.getChannel().transferFrom(csvchannel, 0, Long.MAX_VALUE) fos.close() IJ.log("done")
Creating JSON object
JSON object can be directly created from Java Maps. Here, we use TreeMap to keep the ordering of Map elements.
from java.util import TreeMap from org.json import JSONObject amap = TreeMap() amap.put("red", 0.6) amap.put("green", 1) amap.put("blue", 0.3) jo = JSONObject(amap) print str(jo)
This code yields:
{"blue":0.3,"green":1,"red":0.6}
Generating Time Stamp String
from java.util import Date from java.text import SimpleDateFormat timeStamp = SimpleDateFormat("yyyy.MM.dd.HH.mm.ss").format(Date()) print timeStamp
Arrays (Lists)
“Array” is called “List” in python. When using list in jython, we should be very very careful whether an array (or list) is Java array or Python list: they both are set of numbers, but they sometimes require conversion. This happens especially when you want to use array in the argument of certain Java methods.
We first start with Python list (or for me is “python array”):
Appending Elements to a List
Two ways to append an element to a list.
a = [] a.append(1) a.append(2) print a # [1, 2] b = [] b = b + [1] b = b + [2] print b # [1, 2] #... can be also written like b = [] b += [1] b += [2] print b # [1, 2]
Concatenate lists
a = [1, 2, 3] b = [4, 5, 6] a = a + b print a
will prints
[1, 2, 3, 4, 5, 6]
in the console.
Remove redundant elements in an Array
a=[1,2,3,4,5,5] a=list(set(a)) a.sort() print a
ImagePlus Array
Some arguments ask for an array of specific type. Since Python array is not java array, one should generate a Java array. For this, you could use jarray package.
import jarray ja = jarray.array([0, 1, 2, 3], 'i')
The second argument specifies the type.
z | boolean |
c | char |
b | byte |
h | short |
i | int |
l | long |
f | float |
d | double |
What if you want to make a java array of a specific class? You could then name the class as the second argument. For example,
import jarray from ij import IJ from ij.plugin RGBStackMerge imp1 = IJ.openImage(path1) imp2 = IJ.openImage(path2) imgarray = jarray.array([imp1, imp2], ImagePlus) colorimp = RGBStackMerge().mergeHyperstacks(imgarray, False)
Converting Java array types
Sometimes we need to convert the type of Java array e.g. double[] to int[]. For this, there is no magic trick and need to run a loop. Below is a code fragment.
from ij.process import StackStatistics import jarray stackstats = StackStatistics(imp) histD = stackstats.histogram() hist = jarray.zeros(len(histD), 'i') for i in range(len(histD)): hist[i] = int(histD[i])
Combined Sort of Lists
from operator import itemgetter ll = [1, 2, 3, 4] ll2 = [5, 7, 8, 6] aa = sorted(zip(ll, ll2), key=itemgetter(1), reverse=True) print aa ll, ll2 = zip(*aa) print list(ll) print list(ll2) # in one line # ll, ll2 = (list(t) for t in zip(*sorted(zip(ll, ll2))))
… results in:
[(3, 8), (2, 7), (4, 6), (1, 5)] (3, 2, 4, 1) (8, 7, 6, 5)
Looping Two Arrays Simultaneously
Python fo-looping is pretty flexible.
a = [1, 2, 3, 4] b = [10, 20, 30, 40] for aa, bb in zip(a, b): c = aa + bb print c
zip command creates a list of tuples from elements of arrays a and b.
Using Java8 Stream
Stream-related syntax introduced from Java8 is useful for writing clear codes, but cannot be directly used in Jython. Below is a way to use StreamAPI, by introducing Jython classes implementing the Consumer interface. I took this idea from here. For the Java Stream API, this page is useful: The Java 8 Stream API Tutorial
from java.util.Arrays import asList from java.util.function import Predicate, Consumer, Function from java.util.stream import Collectors from java.util import Arrays class jc(Consumer): def __init__(self, fn): self.accept=fn class jf(Function): def __init__(self, fn): self.apply = fn class jp(Predicate): def __init__(self, fn): self.test = fn def jprint(x): print x tt = ["a", "b", "c"] c = Arrays.stream(tt).count() print c print "forEach printing" Arrays.stream(tt).forEach(jc(lambda x: jprint("="+x))) print "forEach printing parallelly" Arrays.stream(tt).parallel().forEach(jc(lambda x: jprint("="+x))) print "has b?", Arrays.stream(tt).anyMatch(jp(lambda x: x=="b")) print "has z?", Arrays.stream(tt).anyMatch(jp(lambda x: x=="z")) # convert to Java List<> jtt = Arrays.asList(tt) jtt.stream().forEach(jc(lambda x: jprint("+"+x)))
Event Listener
An example of implementing KeyListener, written by Christoph Schiklenk. This script loads a tab-delimited text file, show it in a results-table style that accepts key-press down event and loads the data in the currently selected row.
from java.awt.event import KeyEvent, KeyAdapter from os.path import basename, splitext path = "/Users/miura/Desktop/tmp/val_p1_c2.tsv" filename = splitext(basename(path))[0] # imp will be something like a global variable. accessible from # funcitons. imp = IJ.getImage() def doSomething(imp, keyEvent): """ A function to react to key being pressed on an image canvas. """ IJ.log("clicked keyCode " + str(keyEvent.getKeyCode()) + " on image " + str(imp.getTitle())) # Prevent further propagation of the key event: keyEvent.consume() class ListenToKey(KeyAdapter): def keyPressed(this, event): eventSrc = event.getSource() tp = eventSrc.getParent() #panel is the parent, canvas being component. print eventSrc print tp print "selected line:", tp.getSelectionEnd() print "...", tp.getLine(tp.getSelectionEnd()) #imp = event.getSource() doSomething(imp, event) # - - - M A I N - - - listener = ListenToKey() txtfile = open(path) tw = TextWindow("Results_" + filename, txtfile.readlines(1)[0], "", 300, 700) for line in txtfile.readlines(): frame, dist, volChI, volChII = line.split("\t") tw.append(str(frame) + "\t" + str(dist) + "\t" + str(volChI) + "\t" + str(volChII)) tw.getTextPanel().addKeyListener(listener)
GUI: wait for user
To pause the script processing and wait for the user input (e.g. creating amanual ROI), use WaitForUserDialog class.
from ij.gui import WaitForUserDialog print("start") wud = WaitForUserDialog("test: wait for user", "Click OK if you are done with your manual work") print("waiting...") wud.show() print("done")
HashMap
Python
Maps are called Dictionary in Python.
To split a dictionary to key lists and value lists:
results = {'mean': 10.0, 'sd': 3.3} headers = results.keys() values = results.values() print headers print values
Java
Getting the max number of keys, in case if the key is integer.
from java.util import HashMap, Collections tt = HashMap() tt.put(1, "1") tt.put(200, "2") tt.put(2, "2") print Collections.max(tt.keySet())
ImageProcessor related
Canvas Resizing
The code below grabs currently active 2D image and creates another image with additional 100 pixels at the bottom.
from ij import IJ, ImagePlus from ij.plugin import CanvasResizer ip = IJ.getImage().getProcessor() cd = CanvasResizer() bigip = cd.expandImage(ip, ip.getWidth(), ip.getHeight() + 100, 0, 0) ImagePlus("resized", bigip).show()
Type Conversion
In all cases shown below the image will be overwritten. If you do not want that, Duplicate image fist by
imp2 = imp.duplicate()
or
from ij.plugin import Duplicator imp2 = Duplicator().run(imp)
to RGB
from ij import IJ from ij.process import ImageConverter imp = IJ.getImage() ImageConverter(imp).convertToRGB()
to 8bit grayscale
from ij import IJ from ij.process import ImageConverter imp = IJ.getImage() ImageConverter(imp).convertToGray8()
Channel Splitter
[Image > Color > Split Channels]
from ij import IJ from ij.plugin import ChannelSplitter imp = IJ.getImage() imps = ChannelSplitter.split(imp) imps[0].show() # Channel 1 imps[1].show() # Channel 2
Channel Merge
[Image > Color > Merge Channels…]
from ij import ImagePlus from ij.plugin import RGBStackMerge, RGBStackConverter impc1 = ImagePlus("path/to/image.tif") impc2 = ImagePlus("path/to/image.tif") mergeimp = RGBStackMerge.mergeChannels([impc2, None, impc1, None, None, None, None], True) # convert the composite image to the RGB image RGBStackConverter.convertToRGB(mergeimp) mergeimp.show()
Z projection
# example script for z projection # extracts first time point from a 4D stack and do maximum intensity Z-projection from ij import IJ from ij.plugin import ZProjector from emblcmci import Extractfrom4D def maxZprojection(stackimp): zp = ZProjector(stackimp) zp.setMethod(ZProjector.MAX_METHOD) zp.doProjection() zpimp = zp.getProjection() return zpimp imp = IJ.getImage() e4d = Extractfrom4D() e4d.setGstarttimepoint(1) IJ.log("current time point" + str(1)) aframe = e4d.coreheadless(imp, 3) outimp = maxZprojection(aframe) outimp.show()
Another example with the map function
# splits multichannel-zstack hyperstack and apply zprojection from ij import IJ from ij.plugin import ZProjector from ij.plugin import ChannelSplitter def sumzp( imp ): zp = ZProjector(imp) zp.setMethod(ZProjector.SUM_METHOD) zp.doProjection() zpimp = zp.getProjection() return zpimp imp = IJ.getImage() imps = ChannelSplitter.split( imp ) zpimps = map(sumzp, imps) zpimps[0].show()
Threshold to create a mask (Binary)
Single Threshold Value
With single threshold value, pixels lower than or equal to the value will be 0 and otherwise 255.
# an example with a threshold value of 125. from ij import IJ imp = IJ.getImage() imp.getProcessor().threshold(125) imp.updateAndDraw()
Lower and Upper Threshold Value
With lower and upper threshold values, there is no really direct way but to convert the thresholded area to a selection (ROI), apply ROI to the image then convert it to a mask.
There is also a lower way by evaluating pixel by pixel, but this should be obvious.
# an example with lower and upper threshold values, 100 and 125. from ij import IJ, ImagePlus from ij.process import ImageProcessor from ij.plugin.filter import ThresholdToSelection imp = IJ.getImage() imp.getProcessor().setThreshold(100, 125, ImageProcessor.NO_LUT_UPDATE) roi = ThresholdToSelection.run(imp) imp.setRoi(roi) maskimp = ImagePlus("Mask", imp.getMask()) maskimp.show()
Stack to Mask by a threshold value
Here is an example script to create a mask from an 8-bit stack using intensity thresholding. The threshold value is derived by the Otsu algorithm using the full stack histogram.
from ij import IJ, ImagePlus, ImageStack from ij.plugin import ChannelSplitter from ij.process import StackStatistics from fiji.threshold import Auto_Threshold #imp = IJ.openImage("http://imagej.nih.gov/ij/images/confocal-series.zip") imp = IJ.getImage() imps = ChannelSplitter.split( imp ) imp1 = imps[0] imp1bin = imp1.duplicate() # get auto threshold value stats = StackStatistics(imp1bin) histdouble = stats.histogram() # need this conversion from double to int histint = map(lambda x:int(x), histdouble) th = Auto_Threshold.Otsu(histint) for i in range(imp1bin.getStackSize()): ip = imp1bin.getStack().getProcessor( i + 1) ip.threshold(th) IJ.run(imp1bin, "Grays", ""); imp1bin.show()
To do this by accessing the pixel array of the stack, here is the way. It takes a longer time than above, so this is just to show the technique to process by pixel values using float processor pixel array object.
from ij import IJ, ImagePlus, ImageStack from ij.plugin import ChannelSplitter from ij.process import StackStatistics from ij.process import FloatProcessor from fiji.threshold import Auto_Threshold import jarray imp = IJ.openImage("http://imagej.nih.gov/ij/images/confocal-series.zip") #imp = IJ.getImage() imps = ChannelSplitter.split( imp ) imp1 = imps[0] ww = imp1.getWidth() hh = imp1.getHeight() binstack = ImageStack( ww, hh) # get auto threshold value stats = StackStatistics(imp1) histdouble = stats.histogram() histint = map(lambda x:int(x), histdouble) th = Auto_Threshold.Otsu(histint) for i in range(imp1.getStackSize()): slicepixA = imp1.getStack().duplicate().convertToFloat().getPixels(i + 1) # pixmin = reduce(min, slicepixA) # pixmax = reduce(max, slicepixA) # print "pixvalue range:", pixmin, " - " ,pixmax slicepixA = map(lambda x: 0.0 if x<th else 255.0, slicepixA) fp = FloatProcessor( ww, hh, slicepixA, None) bp = fp.convertToByteProcessor() binstack.addSlice(str(i+1), bp) binimp = ImagePlus("bin", binstack) binimp.show()
ROI manager
Removing all ROIs from the ROI manager.
rm = RoiManager.getInstance() ht = rm.getList() ht.removeAll()
which is equivalent to
rm = RoiManager.getInstance() rm.runCommand('reset')
Loading image silently and do multiple measurements for all ROIs, without showing the RoiManager associated dialog. In other words, the silent version of macro command:
roiManager("Multi Measure")
# loading an image from the imagej site # if you want to load an image from local, replace the URL with a file path imp = ImagePlus('http://imagej.nih.gov/ij/images/boats.gif') # uncomment the following line if you want to see the image #imp.show() # RoiManager should be present rm = RoiManager.getInstance() ip = imp.getProcessor() #rm.setVisible(False) # Instead of multimeasure command in RoiManager, get an array of ROIs. ra = rm.getRoisAsArray() # loop through ROI array and do measurements. # here is only listing mean intensity of ROIs # if you want more, see # http://rsbweb.nih.gov/ij/developer/api/ij/process/ImageStatistics.html for r in ra: ip.setRoi(r) istats = ip.getStatistics() print istats.mean
Saving All ROIs as a single zip file
import os, jarray from ij.plugins.frame.RoiManager outdir = "/Users/miura/Downloads" roizipname = "myROIs.zip" roizippath = os.path.join(outdir, roizipname) rm = RoiManager.getInstance() if rm.getCount() > 0: roiindex = jarray.array(range(0, rm.getCount()), 'i') rm.setSelectedIndexes(roiindex) rm.runCommand('Save', roizippath)
Union of multiple ROIs
For combining multiple ROIs, ShapeRoi class is useful.
from ij.gui import ShaprRoi sr1 = ShapeRoi(roi1) sr2 = ShapeRoi(roi2) sr3 = sr1.or(sr2)
sr3 is then a combination of ROIs roi1 and roi2. In similar way, there are AND, XOR, NOT and so on, logical operations.
Mask to selection (Binary to Selection)
[Edit > Selection > Create Selection]
Suppose that the active image is a black and white binary image, and to create a selection from black pixels and store the resulted ROI in the RoiManager, do the following.
from ij.plugin.filter import ThresholdToSelection from ij.plugin.frame import RoiManager rm = RoiManager() segimp = IJ.getImage() segimp.getProcessor().setThreshold(0, 0, ImageProcessor.NO_LUT_UPDATE) boundroi = ThresholdToSelection.run(segimp) rm.addRoi(boundroi)
Adding Overlay in 3D Stack (ROI to Overlay)
from ij import IJ from ij.gui import OvalRoi, Overlay imp = IJ.getImage() roi = OvalRoi(170, 160, 22, 22) roi.setPosition(19) ol = Overlay() ol.add(roi) imp.setOverlay(ol) ol.setStrokeWidth(2)
Export ROIs in RoiManager to a SVG file
To export ROIs as a vector drawing for use in other applications (e.g. PDF, Adobe Illustrator), one way is to export them in SVG format. This file format is nothing more than text (XML), so it's pretty good for programmatically using it to export ImageJ ROIs. Johannes Schindeline once even suggested to export ROIs using ImageJ Macro by directly writing texts in SVG format.
The code below uses a free library called jfreeSVG from Jfreechart group. This is a separate package not included in jfreechart so it should be downloaded and installed in Fiji (jfreechart is included in Fiji package). Javadoc for jfreeSVG is here.
For more details about SVG format, see here.
import sys from java.awt import Color from java.io import File from ij import IJ from ij.gui import ShapeRoi from ij.plugin.frame import RoiManager from org.jfree.graphics2d.svg import SVGGraphics2D, SVGUtils imp = IJ.getImage() rm = RoiManager.getInstance() if rm is None: print 'None' sys.exit() # convert ROIs in RoiManager to an array of shapeRois jrois = rm.getRoisAsArray() srois = [ShapeRoi(jroi) for jroi in jrois] # http://www.jfree.org/jfreesvg/javadoc/ g2 = SVGGraphics2D(imp.getWidth(), imp.getHeight()) g2.setPaint(Color.BLACK) px = 0.0 py = 0.0 for sroi in srois: g2.translate(px*-1, py*-1) px = sroi.getBounds().x py = sroi.getBounds().y g2.translate(px, py) g2.draw(sroi.getShape()) se = g2.getSVGElement() # writing the file path = "/Users/miura/tmp/testsvg3.svg" SVGUtils.writeToSVG(File(path), se)
One problematic aspect of ROIs are that they could be various, such as lines, rectangles, ovals and polygons. In SVG these different types of ROIs should be treated as different shapes (use different tags). jfreeSVG allows to draw various shapes just by passing java.awt.Shape object, so we do not have to deal with different ROI types in ImageJ and can be moderately generic: IJ ROIs can be converted to IJ ShapeRoi object, which can then be directly converted to java.awt.Shape class.
There are other IJ plugins implementing SVG access. I tried IJ1ROIsToSVGFileWriter, a class in plugin Slide Set. It works for simple ROIs like Rect. ROIs, but for polygons it returns out of memory errors.
There is also plugin ScienFig which should have some SVG export methods implemented but have not looked at it in depth.
Automatic Brightness/Contrast Button
In the legacy “Brightness/Contrast” GUI, there is a button labeled “Auto” which calculates the minimum and the maximum pixel values for enhancing contrast of the current image (the GUI then updates the LUT accordingly). Following are the steps how these values are found out.
- get the number of total pixel number (pixelCount)
- set the limit of pixel number. (limit = pixelCount/10)
- set the threshold value. (threshold = pixelCount/5000)
- get an array of pixel intensity histogram of the current image.
- then there are two independent loops, one for finding the lower and another for finding the upper value.
- lower value finder: loop starts from histogram[0] and increments. For every pixel intensity,
- if the count exceeds “limit”, then count becomes 0
- if the count is larger than “threshold”, then that value is the minimum.
- higher value finder: loop starts from histogram[255] and decrements. For every pixel intensity,
- if the count exceeds “limit”, then count becomes 0
- if the count is larger than “threshold”, then that value is the maximum.
Explanation in human language: this algorithm first determines two values “limit” and “Threshold”.
“Threshold” is the parameter that actually sets the min and the max of the contrast curve for the automatic enhancement. Starting from the lowest pixel value (0) or the highest value (255), the algorithm determines the number of pixels with that pixel value. If the number exceeds 0.02% of total pixel number, then that pixel value becomes wither the min or the max for enhancing the contrast. For this decision to ignore background pixels, the algorithm also needs to have another decision determining the background pixel value.
“limit” actually is a fixed number for each image to decide which of black (0) or white (255) is the background. If the number of pixels with current pixel value is more than 10% of total pixel number, then that value is considered to be the background of the image. For example, when the number of pixels with the value of 0 is 15%, then pixels with 0 values are background. In the next step, if pixels with the value of 1 are still over 10% like 11%, then pixels with values ⇐ 1 are background. When the background is white, then similar decision takes place in the second loop.
The Jython script shown below is the re-written version based on original Java code. You could see the Java code of method “autoadjust” in the git repo, line 780-829.
# rewriting "Auto contrast adjustment" button of "Brightness/Contrast" # Kota Miura # 20120515 autoThreshold = 0 AUTO_THRESHOLD = 5000 imp = IJ.getImage() cal = imp.getCalibration() imp.setCalibration(None) stats = imp.getStatistics() # get uncalibrated stats imp.setCalibration(cal) limit = int(stats.pixelCount/10) histogram = stats.histogram #int[] if autoThreshold<10: autoThreshold = AUTO_THRESHOLD else: autoThreshold /= 2 threshold = int(stats.pixelCount/autoThreshold) #int print "pixelCount", stats.pixelCount print "threshold", threshold print "limit", limit i = -1 found = False count = 0 # int while True: i += 1 count = histogram[i] if count>limit: count = 0 found = count> threshold if found or i>=255: # if 0 not in (!found, i<255) : break hmin = i #int i = 256 while True: i -= 1 count = histogram[i] if count>limit: count = 0 found = count> threshold if found or i<1: # if 0 not in (!found, i<255) : break hmax = i #int print "minimum", hmin print "maximum", hmax
Lines 17-18 seems to be not accessed at all, and seems to be not required.
Here is the same written in ImageJ macro language.
AUTO_THRESHOLD = 5000; getRawStatistics(pixcount); limit = pixcount/10; threshold = pixcount/AUTO_THRESHOLD; nBins = 256; getHistogram(values, histA, nBins); i = -1; found = false; do { counts = histA[++i]; if (counts > limit) counts = 0; found = counts > threshold; }while ((!found) && (i < histA.length-1)) hmin = values[i]; i = histA.length; do { counts = histA[--i]; if (counts > limit) counts = 0; found = counts > threshold; } while ((!found) && (i > 0)) hmax = values[i]; setMinAndMax(hmin, hmax); print(hmin, hmax);
Counting number of pixels with a specific value in a stack
In the example below, the code counts pixels with a value of 100. List comprehensions are a bit cryptic, but by getting use to it, it avoids looping.
from ij import IJ imp = IJ.getImage() pixval = 100 count = 0 ips = [imp.getStack().getProcessor(i + 1).getPixels() for i in range(imp.getStackSize())] ipl = [p for pvals in ips for p in pvals] count = len(filter(lambda x: x==pixval, ipl)) print "pixval=", pixval, " count:", count
RGB (Color) Image, Enhance Contrast each channel
To separately set min/max displayed pixel values, add the 3rd argument in setMinAndMax methods of ImageProcessor (in fact, this will be ColorProcessor).
from ij import IJ imp = IJ.getImage() stk = imp.getStack() for i in range(stk.getSize()): ip = stk.getProcessor(i + 1) # red channel = 4 ip.setMinAndMax(46, 301, 4) # green channel = 2 ip.setMinAndMax(29, 80, 2) # blue channel = 1 ip.setMinAndMax(29, 80, 1) imp.updateAndDraw()
Translation of 3D image using ImgLib2
Translation of image using ImgLib2 affine transform, taking “flybrain” sample image as an example. A work of Christian Tischer with advices from Stephan Saalfeld.
from ij import IJ, ImagePlus, Prefs from net.imglib2.img.imageplus import ImagePlusImgs from net.imglib2.view import Views from net.imglib2.realtransform import RealViews, Translation3D from net.imglib2.interpolation.randomaccess import NLinearInterpolatorFactory from net.imglib2.img.display.imagej import ImageJFunctions # get fly brain sample image imp = ImagePlus(Prefs.getImagesURL() + "flybrain.zip") # display the image before translation imp.show() # convert ImagePlus to Img img = ImagePlusImgs.from(imp) # any different to the method above? print img # prepare image for translation using interpolation: padding extended = Views.extendBorder(img) # prepare image for translation using interpolation: interpolate the image to get continuous image interpolant = Views.interpolate(extended, NLinearInterpolatorFactory()) # translation parameters dx=100; dy=50; dz=0; # construct Translation3D object transform = Translation3D(dx, dy, dz) # transformation transformed = RealViews.affine(interpolant, transform) # crop transformed image with the interval of original image cropped = Views.interval(transformed, img) # display the image after translation in ImageJ1 frame work. ImageJFunctions.show(cropped)
Filters
Binary
With binary operations, it's important to explicitly set if the background is dark or light. In GUI this could be set by [Process > Binary > Options…] and check 'Black background'. Within scripts, you could do the same by
from ij import Prefs Prefs.blackBackground = True
For those under [Process > Binary]:
from ij.plugin.filter import Binary imp = IJ.getImage() ip = imp.getProcessor() binner = Binary() binner.setup("fill", None) binner.run(ip) binner.setup("erode", None) binner.run(ip) binner.run(ip) binner.setup("dilate", None) binner.run(ip) binner.run(ip)
See the source:
Rank Filters
[Process > Filters > Minimum], with radius 20.
from ij.plugin.filter import RankFilters imp = IJ.getImage() imp2 = imp.duplicate() rf = RankFilters() rf.rank(imp2.getProcessor(), 20, RankFilters.MIN) imp2.show()
Gaussian Blur
For a radius of 2.0, following does the blurring same as GUI Gaussian Blur.
from ij.plugin.filter import GaussianBlur radius = 2.0 accuracy = 0.01 GaussianBlur().blurGaussian( imp2.getProcessor(), radius, radius, accuracy)
As this works only with single 2D image, for-looping is required to process all frames / slices in a stack. For example:
from ij.plugin.filter import GaussianBlur radius = 10.0 accuracy = 0.01 for i in range(imp2.getStackSize()): GaussianBlur().blurGaussian(imp2.getStack().getProcessor(i+1), radius, radius, accuracy)
For more explanation about this processing, see the explanation in javadoc.
Background Subtraction (Rolling Ball)
Menu item [Process > Subtract Background]
from ij import IJ from ij.plugin.filter import BackgroundSubtracter imp = IJ.getImage() ip = imp.getProcessor() radius = 50.0 createBackground = False lightBackground = False useParaboloid = False doPresmooth = False correctCorners = False bs = BackgroundSubtracter() bs.rollingBallBackground(ip, radius, createBackground, lightBackground, useParaboloid, doPresmooth, correctCorners) imp.updateAndDraw()
If the image is in RGB, then use a different method (rollingBallBrightnessBackground).
For more explanation about this processing, see the explanation in javadoc.
ImageCalculator
Combined use of erosion and Image Calculator to extract contour from binary image.
from ij import IJ from ij.plugin.filter import Binary from ij.plugin import ImageCalculator from ij.plugin import Duplicator imp = IJ.getImage() imp2 = Duplicator().run(imp) eroder = Binary() eroder.setup("erode", None) eroder.run(imp2.getProcessor()) ImageCalculator().run("Subtract", imp, imp2)
The last line first argument should be added with more options to create a new image and / or to process stack. Below is an example to process all frames / slices in a stack and also create a new ImagePlus.
imp3 = ImageCalculator().run("Subtract create stack", imp, imp2)
Watershed
from ij.plugin.filter import EDM ip = IJ.getImage().getProcessor() edm = EDM() if ip.isBinary is False: IJ.log("8-bit binary image (0 and 255) required.") else: edm.setup("watershed", None) edm.run(ip)
Source:
Find Maxima (+ RGB Merge)
Find Maxima has watershed based segmentation capability. This example segments images and then merges the segmented binary on top of the original image.
from ij.plugin import RGBStackMerge from ij import ImagePlus, IJ from ij.process import ImageProcessor from ij.plugin.filter import MaximumFinder from jarray import array from ij import Prefs from ij.plugin.filter import Binary imp = IJ.getImage() ip = imp.getProcessor() segip = MaximumFinder().findMaxima( ip, 10, ImageProcessor.NO_THRESHOLD, MaximumFinder.SEGMENTED , False, False) segip.invert() segimp = ImagePlus("seg", segip) segimp.show() mergeimp = RGBStackMerge.mergeChannels(array([segimp, None, None, imp, None, None, None], ImagePlus), True) mergeimp.show()
Filter 3D
[Process > Filters > Median 3D…]
Command recorder would log
IJ.run(imp, "Median 3D...", "x=4 y=4 z=4")
This is OK, but to use the class in behind directly, below is the code written by Tiago Ferreira (see this link).
from ij import IJ from ij import ImagePlus from ij.plugin import Filters3D # 1. get image get = IJ.openImage("http://imagej.net/images/clown.jpg"); # 2. get the image stack within the ImagePlus stack = get.getStack() # 3. Instantiate plugin [1] f3d = Filters3D() # 4. Retrieve filtered stack newStack = f3d.filter(stack, f3d.MEDIAN, 4.0, 4.0, 4.0) # 5. Construct an ImagePlus from the stack newImage = ImagePlus("Filtered Clown", newStack); # 6. Display result newImage.show()
Analysis
Descriptive statistics
For calculating descriptive statistics, one way is to use apache commons math library. Below is an elementary example, but more could be done: for more, see here
from org.apache.commons.math3.stat.descriptive import DescriptiveStatistics as DSS rt = ResultsTable.getResultsTable() area = rt.getColumnAsDoubles(rt.getColumnIndex("Area")) print "Mean",dss.getMean() print "Meadian",dss.getPercentile(50) print dss
Weka has basic statistics classes under weka.experiment(especially the Class e.g. Stats), but I have not used them. I think I need weka textbook for the use of this rich resource.
JfreeChart also has statistics classes. See here. An example of detecting outliers is shown in below.
Particle Analysis
An example of applying particle analysis to a stack.
from ij import IJ, ImagePlus from ij.plugin.filter import ParticleAnalyzer as PA from ij.measure import ResultsTable imp = IJ.getImage() MAXSIZE = 10000; MINSIZE = 100; options = PA.SHOW_ROI_MASKS \ + PA.EXCLUDE_EDGE_PARTICLES \ + PA.INCLUDE_HOLES \ + PA.SHOW_RESULTS \ rt = ResultsTable() p = PA(options, PA.AREA + PA.STACK_POSITION, rt, MINSIZE, MAXSIZE) p.setHideOutputImage(True) stk = ImageStack(imp.getWidth(), imp.getHeight()) for i in range(imp.getStackSize()): imp.setSliceWithoutUpdate(i + 1) p.analyze(imp) mmap = p.getOutputImage() stk.addSlice(mmap.getProcessor()) ImagePlus("tt", stk).show()
Detect Outliers
Outlier detection based on jfree library.
from org.jfree.data.statistics import BoxAndWhiskerCalculator #http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/BoxAndWhiskerCalculator.html from java.util import ArrayList, Arrays class InstBWC(BoxAndWhiskerCalculator): def __init__(self): pass rt = ResultsTable.getResultsTable() yposA = rt.getColumn(rt.getColumnIndex('x')) xposA = rt.getColumn(rt.getColumnIndex('y')) zposA = rt.getColumn(rt.getColumnIndex('z')) m0A = rt.getColumn(rt.getColumnIndex('m0')) scoreA = rt.getColumn(rt.getColumnIndex('NPscore')) m0list = ArrayList(Arrays.asList(scoreA.tolist())) print m0list.size() #bwc = BoxAndWhiskerCalculator() bwc = InstBWC() ans = bwc.calculateBoxAndWhiskerStatistics(m0list) #http://www.jfree.org/jfreechart/api/javadoc/org/jfree/data/statistics/BoxAndWhiskerItem.html print ans.toString() print ans.getOutliers()
Curve Fitting
Curve fitting using ImageJ CurveFitter class.
from ij.measure import CurveFitter import jarray #creat example data arrays xa = [1, 2, 3, 4] ya = [3, 3.5, 4, 4.5] #convert to java array jxa = jarray.array(xa, 'd') jya = jarray.array(ya, 'd') #construct a CurveFitter instance cf = CurveFitter(jxa, jya) #actual fitting #fit models: see http://rsb.info.nih.gov/ij/developer/api/constant-values.html#ij.measure.CurveFitter.STRAIGHT_LINE cf.doFit(CurveFitter.STRAIGHT_LINE) #print out fitted parameters. print cf.getParams()[0], cf.getParams()[1]
3D Viewer
Rotating, Zooming
Grab currently opened 3Dviewer (Image3DUniverse instance) and control the rotation and zooming. There seems to be several ways possible, and using ij3d.behaviors.ViewPlatformTransformer seems to be convenient.
from ij3d import Image3DUniverse as i3d from javax.vecmath import Vector3d as v3d import sys from javax.media.j3d import Transform3D from ij3d.behaviors import ViewPlatformTransformer import time univs = i3d.universes if univs.size() is 0: print 'no 3D viewer on desktop!' sys.exit(1) univ = univs.get(0) vtf = ViewPlatformTransformer(univ, univ) x1z1 = v3d(1, 0, 1) univ.rotateToPositiveXY() vtf.zoomTo(1000) for zm in range(1,3000, 10): vtf.zoomTo(zm) vtf.rotate(x1z1, 0.03) time.sleep(0.01) for zm in range(3000, 1000, -10): vtf.zoomTo(zm) vtf.rotate(x1z1, 0.03) time.sleep(0.01)
Accessing Time Line in 4D
Controlling animations of time series movie.
from ij3d import Image3DUniverse as i3d import sys univs = i3d.universes if univs.size() is 0: print 'no 3D viewer on desktop!' sys.exit(1) univ = univs.get(0) tl = univ.getTimeline() tl.first() frames = tl.size() for i in range(frames): try: Thread.sleep(50) except InterruptedException, e: print 'wait error' tl.next()
Combined application with movie saving
Combination of aboves + saving snapshots as a stack.
# movie making, using 4D stacks and 3D viewer from ij3d import Image3DUniverse as i3d from javax.vecmath import Vector3d as v3d import sys from javax.media.j3d import Transform3D from ij3d.behaviors import ViewPlatformTransformer import time univs = i3d.universes if univs.size() is 0: print 'no 3D viewer on desktop!' sys.exit(1) univ = univs.get(0) vtf = ViewPlatformTransformer(univ, univ) x1z1 = v3d(1, 0, 1) tl = univ.getTimeline() tl.first() frames = tl.size() rad = 0 #win = univ.getWindow() imp = univ.takeSnapshot() stk = ImageStack(imp.width, imp.height) stk.addSlice(imp.getProcessor()) while rad < 4: for i in range(frames): time.sleep(0.05) vtf.rotate(x1z1, 0.04) rad += 0.03 stk.addSlice(univ.takeSnapshot().getProcessor()) time.sleep(0.05) tl.next() tl.first() ImagePlus('movie', stk).show()
Visualizing XYZ positions listed in Results table in 3Dviewer
I often need to visualize 3D distribution of XYZ coordiantes listed in the results table in 3D viewer. Below is an example of using results from ParticleTracker 2D/3D being plotted in the 3D viewer.
For using this with orther plugins such as ObjectCounter 3D, column header names need to be replaced.
from javax.vecmath import Point3f, Color3f from java.util import ArrayList from ij3d import Image3DUniverse from customnode import CustomPointMesh rt = ResultsTable.getResultsTable() yposA = rt.getColumn(rt.getColumnIndex('x')) xposA = rt.getColumn(rt.getColumnIndex('y')) zposA = rt.getColumn(rt.getColumnIndex('z')) mesh = ArrayList() for i in range(len(xposA)): mesh.add(Point3f(xposA[i], yposA[i], zposA[i])) univ = Image3DUniverse() univ.showAttribute(Image3DUniverse.ATTRIBUTE_COORD_SYSTEM, False) univ.show() cm = CustomPointMesh(mesh) cm.setColor(Color3f(0, 1, 0)) univ.addCustomMesh(cm, "points") cm.setPointSize(3)
Plugin: LOCI BioFormats
Importing CZI file
from loci.plugins import BF from loci.plugins.in import ImporterOptions filepath = "/path/to/image/my.czi" # Options for Bioformats plugin, includeing the image path options = ImporterOptions() options.setOpenAllSeries(True) options.setShowOMEXML(False) options.setStitchTiles(False) options.setId(filepath) fullimps = BF.openImagePlus(options) #fullimps now holds multiple images contained within the czi file. # open the first one. fullimps[0].show()
If you do not want to open all images (called sereies) in multi-image CZI files, replace
open.setOpenAllSeries(True)
with
options.setSeriesOn(seriesIndex, True)
with “sereiesIndex” being the seriesID e.g. 1 or 2 or 3 …
See here for more on metadata parsing and so on: bio-formats.py
Count the number of image data set in a CZI file
For just knowing the number of images contained in a CZI file, you do not need to load full image (then it's faster).
from loci.formats import ImageReader r = ImageReader() filepath = '/to/my.czi' r.setId( filepath ) print r.getSeriesCount()
Replacing OME-TIFF XML
from loci.formats.tiff import TiffParser from loci.formats.tiff import TiffSaver from loci.common import DataTools from loci.common import RandomAccessInputStream from loci.common import RandomAccessOutputStream filepath = '/Users/miura/Desktop/test.ome.tif' # test reading out (no new lines) comment = TiffParser(filepath).getComment() print comment # replacing OME-XML xmlpath = '/Users/miura/Desktop/ometest.xml' newComment = DataTools.readFile(xmlpath) filein = RandomAccessInputStream(filepath) fileout = RandomAccessOutputStream(filepath) saver = TiffSaver(fileout, filepath) saver.overwriteComment(filein, newComment) filein.close() fileout.close()
If you are accessing from commandline, use “TiffComment” Bioformat Tool. For example,
tiffcomment test.ome.tif | xmlindent
outputs xml in your console. More on the udage of command line tools for dealing with OME-XML could be found here.
Plugin: FeatureJ
FeatureJ uses its own abstract class representing image data (imagescience.image.Image). For this, you first need to wrap ImagePlus object as Image object and do the processing.
Laplacian
from ij import IJ from imagescience.image import Image as FJimage from imagescience.feature import Laplacian imp = IJ.getImage() fjimg = FJimage.wrap(imp) fjimglap = Laplacian().run(fjimg, 1.0) imp2 = fjimglap.imageplus() imp2.show()
Plugin: Extended Depth of Field (Easy mode)
Usage of a plugin Extended Depth of Field (Easy mode) from script.
import jarray from edfgui import BasicDialog imp = IJ.getImage() ''' here need to check conditions of the image, it should not be less than - 4 pixel width - 4 pixel height - 2 slices ''' imagesize = jarray.array([imp.getHeight(), imp.getHeight()], 'i') color = imp.getType() == ImagePlus.COLOR_RGB dl = BasicDialog(imagesize, color, False) # "quality='1' topology='0' show-view='on' show-topology='off'" quality = 1 topology = 0 showview = True showtopology= False dl.parameters.setQualitySettings(quality) dl.parameters.setTopologySettings(topology) dl.parameters.show3dView = showview dl.parameters.showTopology = showtopology dl.process()
Plugin: Using Find Connected Regions
Find Connected Regions is a plugin that outputs connected regions as pixel-value-labeled image of connected regions. This function is similar to “Particle Analysis” and selecting “count masks” as output, but with a bit more capability in settings with less outputs (meaning less complex), and does even 3D connected components. Here is an example function.
def getNucLabels(segimp): fcrresults = FCR().run(segimp, True, True, True, True, True, False, False, 100, 600, 100, True) allregionimp = fcrresults.allRegions perRegionlist = fcrresults.perRegion infolist = fcrresults.regionInfo return allregionimp, perRegionlist, infolist
Returned values in the above example are:
- allregionimp … a single image with labels for each region. Psudo color image.
- perRegionlist … a list of binary label images, one slice per label.
- infolist … a list of region infos.
Arguments for the run method are many, and here is what they are: <codes> run( ij.ImagePlus imagePlus, boolean diagonal, boolean imagePerRegion, boolean imageAllRegions, boolean showResults, boolean mustHaveSameValue, boolean startFromPointROI, boolean autoSubtract, double valuesOverDouble, double minimumPointsInRegionDouble, int stopAfterNumberOfRegions, boolean noUI) </code> More details of each of these setting parameters are available here. The source code is FindConnectedRegions.java within VIB.jar and could be accessed is here, which is a bit hidden as the plugin class (Find_Connected_Regions.java, in VIB_.jar) is a wrapper.
Some interesting discussions could be found in this fiji-dev thread.
Javadoc
Plugin: Anisotropic Diffusion
from anisotropic_diffusion import Anisotropic_Diffusion_2D as AD def aniso2D(imp): ad = AD() ad.setNumOfIterations(20) ad.setSmoothings(10) ad.setSaveSteps(20) ad.setLimiterMinimalVariations(0.40) ad.setLimiterMaximalVariations(0.90) ad.setTimeSteps(20) ad.setEdgeThreshold(10.0) ad.setup("",imp) adimp = ad.runTD(imp.getProcessor()) return adimp imagepath = '/Volumes/D/20130305/l5c1-128.tif' imp = IJ.openImage(imagepath) adimp = aniso2D(imp) adimp.show()
Plugin: Advanced Weka Segmentation
Adding Eamples from ROI
Training and get Probability image using ROI set as examples (labels).
from trainableSegmentation import WekaSegmentation from ij.plugin.frame import RoiManager from ij import IJ from ij.io import FileSaver imp = IJ.openImage('http://imagej.nih.gov/ij/images/blobs.gif') #blobs weka = WekaSegmentation() weka.setTrainingImage(imp) rm = RoiManager(True) rm.runCommand('Open', '/Users/miura/Desktop/tmp/RoiSetc1.zip') roitable =rm.getROIs() keys = roitable.keys() for key in keys: weka.addExample(0, roitable.get(key), 1) rm2 = RoiManager(True) rm2.runCommand('Open', '/Users/miura/Desktop/tmp/RoiSetc2.zip') roitable =rm2.getROIs() keys = roitable.keys() for key in keys: weka.addExample(1, roitable.get(key), 1) if weka.trainClassifier(): weka.applyClassifier(True) classifiedImage = weka.getClassifiedImage() classifiedImage.show()
Merging ARFF data files
import weka.core.Version from weka.core import Instances from weka.core.converters import ConverterUtils print weka.core.Version().toString() pp = '/ARFFdata/' data1path = pp+ 'data1.arff' data2path = pp+ 'data2.arff' data1 = ConverterUtils.DataSource.read(data1path) data2 = ConverterUtils.DataSource.read(data2path) print "data1: ", data1.size() print "data2: ", data2.size() for i in range(data2.size()): data1.add(data2.get(i)) dataMerged = data1 print "Merged: ", dataMerged.size() # if data1 and data2 have the same size, the line below can be used. #dataMerged = Instances.mergeInstances(data1, data2) dataMargedPath = pp + "dataMerged.arff" ConverterUtils.DataSink.write(dataMargedPath, dataMerged )
Merging ARFF data files in another way, train and apply classifier
from trainableSegmentation import WekaSegmentation from ij import IJ # == merging pp = '/ARFFdata/' data1path = pp+ 'data1.arff' data2path = pp+ 'data2.arff' ws = WekaSegmentation() data1 = ws.readDataFromARFF(data1path) data2 = ws.readDataFromARFF(data2path) ws.mergeDataInPlace(data1, data2) #this concatenates data2 to data2 dataBalanced = WekaSegmentation.balanceTrainingData(data1) #optional: can balance the classes ws.setLoadedTrainingData(dataBalanced) dataOutpath = pp+ 'dataBalanced.arff' ws.writeDataToARFF(dataBalanced, dataOutpath) # == now train and apply a classifier to an image if ws.trainClassifier(): imp = IJ.getImage() classifiedImage = ws.applyClassifier(imp, 0, True) classifiedImage.show()
Plugin: CLAHE
Fiji plugin for local contrast enhancements.
from mpicbg.ij.clahe import Flat, FastFlat def stackCLAHE2(imp): for i in range(imp.getStackSize()): imp.setSlice(i+1) Flat.getInstance().run(imp, 49, 256, 3.0, None) # slow, as this will be more precise. #Flat.getFastInstance().run(imp, 49, 256, 3.0, None, False) # FastFlat will be faster and less acculate. imp = IJ.getImage() stackCLAHE2(imp)
Javadoc
In case if you need to use “fast but not precise” method, use the class
Plugin: Gray Morphology
Here is an example of grayscale eroding.
from mmorpho import StructureElement from mmorpho import MorphoProcessor imp = IJ.getImage() se = StructureElement(StructureElement.CIRCLE, 0, 10.0, StructureElement.OFFSET0) morph = MorphoProcessor(se) morph.erode(imp.getProcessor()) imp.updateAndDraw()
For other operations, see Javadoc
Plugin: Shape Smoothing
Shape smoothing by reducing the number of Fourier descriptors. The plugin page is here. The github page is here.
from ij import IJ from de.biomedical_imaging.ij.shapeSmoothing import ShapeSmoothingUtil # https://github.com/thorstenwagner/ij-shape-smoothing/blob/master/src/main/java/de/biomedical_imaging/ij/shapeSmoothing/ShapeSmoothingUtil.java imp = IJ.getImage() ss = ShapeSmoothingUtil() ss.setBlackBackground(True) # Relative proportion FDs (%) thresholdValue = 2 # FD in % or absolute number thresholdIsPercentual = True # If True, a table, containing all FDs, will be shown after processing doOutputDescriptors = False ss.fourierFilter(imp.getProcessor(), thresholdValue, thresholdIsPercentual, doOutputDescriptors)
Plugin: Auto Threshold
This example uses automatic threshoulder class in Fiji. THere is also a way to use original imageJ thresholder. See here.
from fiji.threshold import Auto_Threshold imp = IJ.getImage() hist = imp.getProcessor().getHistogram() lowTH = Auto_Threshold.Otsu(hist) print lowTH # if you want to convert to mask, then imp.getProcessor().threshold(lowTH)
For the other algorithms for the automatic threshold value estimation, see the Javadoc.
Plugin: Auto Local Threshold
Here is an example using Bernsen method.
from fiji.threshold import Auto_Local_Threshold as ALT imp = IJ.getImage() #IJ.run(imp, "Auto Local Threshold", "method=Bernsen radius=45 parameter_1=0 parameter_2=0 white"); thimp = ALT().exec(imp, "Bernsen", 45, 0, 0, False) print len(imp) imps[0].show()
Available methods are:
- Bernsen
- Mean
- Median
- MidGrey
- Niblack
- Sauvola
Returned value of the exec method is an array of object, namely ImagePlus. Array contains scaled images, if such option is selected.
Javadoc
Source
GLCM (Texture analysis)
Measureing Haralick features.
Clone the project below, compile and install it as a plugin. https://github.com/miura/GLCM2
from emblcmci.glcm import GLCMtexture from ij import IJ imp = IJ.getImage() glmc = GLCMtexture(1, 45, True, False) ip = imp.getProcessor() ip8 = ip.convertToByte(True) glmc.calcGLCM(ip8) resmap = glmc.getResultsArray() pa = glmc.paramA for p in pa: print p, resmap.get(p)
Plugin: MiToBo h-dome transformation
h-dome is useful for spot detection in a noisy background. For example, see this reference. The example here uses Plugin MiToBo, a huge collection of various components.
from de.unihalle.informatik.MiToBo.core.datatypes.images import MTBImage from de.unihalle.informatik.MiToBo.morphology import HDomeTransform3D from ij import IJ imp = IJ.getImage() mtb = MTBImage.createMTBImage( imp.duplicate() ) hdome = HDomeTransform3D(mtb, 10.0) hdome.runOp() mtbdone = hdome.getResultImage() imp2 = mtbdone.getImagePlus() imp2.show()
Plugin: MorphoLibJ
Distance Transform Watershed 3D
from ij import IJ, ImagePlus from inra.ijpb.binary import BinaryImages from inra.ijpb.binary import ChamferWeights3D from inra.ijpb.data.image import Images3D from inra.ijpb.watershed import ExtendedMinimaWatershed imp = IJ.getImage() normalize = True dynamic = 2 connectivity = 6 #weights = ChamferWeights3D.fromLabel( ChamferWeights3D.BORGEFORS.toString() ) #weights = ChamferWeights3D.fromLabel( "Borgefors (3,4,5)" ) weights = ChamferWeights3D.BORGEFORS.getShortWeights() dist = BinaryImages.distanceMap( imp.getImageStack(),weights , normalize ) Images3D.invert( dist ) #public static final ImageStack extendedMinimaWatershed( ImageStack image, ImageStack mask, int dynamic, int connectivity, int outputType, boolean verbose ) # @param dynamic the maximum difference between the minima and the boundary of a basin result = ExtendedMinimaWatershed.extendedMinimaWatershed(dist, imp.getImageStack(), dynamic, connectivity, 16, False ) outimp = ImagePlus( imp.getShortTitle() + "dist-watershed", result ) outimp.show()
Connected Component 3D labeling
from ij import IJ, ImagePlus from inra.ijpb.binary import BinaryImages imp = IJ.getImage() connectivity = 6 outbitDepth = 16 outimp = BinaryImages.componentsLabeling(imp, connectivity, outbitDepth) outimp.setTitle(imp.getShortTitle() + "-labeled") outimp.show()
Kill Border Objects, 2D Binary image
from ij import IJ, ImagePlus from inra.ijpb.morphology import Reconstruction imp = IJ.getImage() #binary image newip = Reconstruction.killBorders(imp.getProcessor()) newimp = ImagePlus("BorderKilled", newip) newimp.show()
Plugin 3D ImageJ Suite
3D Suite plugin allows you to process / segment / measure 3D image data. In Fiji, all 3D suite related commands are available under: Plugins > 3D >
The plugin webpage is here: 3D ImageJ Suite
The real power of 3D Suite is using it as a library from scripts and plugins. Many useful classes are implemented for processing, segmenting, and most notably measuring 3D objects.
Source codes are located under framagit:
The Javadoc I created (Core and Plugins are merged):
Measureing Spherical 3D ROI positions
The code below shows how to measure spherical 3D ROI in an image. We first create 3 3D spheres and then use them for measuring the mean pixel intensity of those 3D ROIs within a synthetic gradient 3D image.
from ij import IJ, ImagePlus from mcib3d.geom import ObjectCreator3D from mcib3d.image3d import ImageHandler oc3d = ObjectCreator3D(200, 200, 50) oc3d.createSphere(50, 50, 10, 3, 1, False) oc3d.createSphere(50, 50, 20, 3, 2, False) oc3d.createSphere(50, 50, 30, 3, 3, False) imp = oc3d.getPlus() #imp.show() obj1 = oc3d.getObject3DVoxels(1) obj2 = oc3d.getObject3DVoxels(2) obj3 = oc3d.getObject3DVoxels(3) impnew = IJ.createImage("Measured", 200,200, 50, 16) stack = impnew.getStack() for i in range(stack.getSize()): ip = stack.getProcessor(i + 1) ip.setColor( i * 5 ) ip.fill() ima = ImageHandler.wrap( impnew ) print "Obj1: ", obj1.getPixMeanValue(ima) print "Obj2: ",obj2.getPixMeanValue(ima) print "Obj3: ",obj3.getPixMeanValue(ima)
R: Multi-Peak fitting using R
This is an example script using R function to fit peak positions within intensity profile along a selected line ROI. For installation of Rserve, see here. The script uses the R package "Peaks".
The library “Peaks” only works under R version 2.x. With 3.0.1 and 3.0.2, it fails to work with an error message “#Error in .Call(“R_SpectrumSearchHighRes”, as.vector(y), …”.
from org.rosuda.REngine.Rserve import RConnection from ij.gui import Roi, Overlay c = RConnection() x = c.eval("R.version.string") print x.asString() print c.eval("library(Peaks)").asString() imp = IJ.getImage() roi = imp.getRoi() if roi.getType() == Roi.LINE: print "a line roi" profile = roi.getPixels() c.assign("prof", profile) pks = c.eval("SpectrumSearch(prof, sigma=1, threshold=80, background=FALSE, iterations=20, markov=TRUE, window=10)").asList() pksX = pks[0].asIntegers() rois = [] for i in pksX: print roi.x1, i rois.append(PointRoi(roi.x1, roi.y1 + i)) ol = Overlay() for aroi in rois: ol.add(aroi) imp.setOverlay(ol) c.close()
Misc examples
Running a macro file from Jython
To run your custom ImageJ macro from Jython, here is an example.
from java.io import File from ij.macro import MacroRunner macropath = "/Users/miura/test.ijm" macrofile = File(macropath) mr = MacroRunner(macrofile)
ImageJ Macro Keywords and Functions
Printing out ImageJ macro reserved words.
from ij.macro import MacroConstants as MC print "=== keywords ===" for f in MC.keywords: print f print "=== functions (void) ===" for f in MC.functions: print f print "=== functions (numeric) ===" for f in MC.numericFunctions: print f print "=== funcitons (string) ===" for f in MC.stringFunctions: print f print "=== functions (arrays) ===" for f in MC.arrayFunctions: print f
Implementing Interface
Here is an example of implementing PlugIn interface.
from ij.plugin import PlugIn class GreatPlugin(PlugIn): def __init__ (self): print "This is GreatPlugin class which implements a java interface ij.plugin.Plugin" def run(self): IJ.open('http://imagej.nih.gov/ij/images/blobs.gif') def anotherrun(self): imp = IJ.openImage('http://imagej.nih.gov/ij/images/blobs.gif') imp.getProcessor().invert() imp.show() gp = GreatPlugin() gp.run() gp.anotherrun()
See explanation in here.
Shell Command
To run Shell command in OSX, here is an example.
from java.lang import Runtime from java.util import Scanner def runShellCommand( cmd ): proc = Runtime.getRuntime().exec(cmd) istream = proc.getInputStream() scan = Scanner(istream).useDelimiter("\\n") for ss in scan: print ss runShellCommand( "pwd" ) runShellCommand( "ls -la" )
Is docker daemon running?
Check if the docker daemon is running ():
from java.lang import Runtime from java.util import Scanner def checkDockerRunning( cmd ): proc = Runtime.getRuntime().exec(cmd) inputst = proc.getInputStream() s = Scanner(inputst).useDelimiter("\\n") if not s.hasNext(): print "Please start docker desktop!" return False for ss in s: print ss if ss.startswith("CONTAINER ID"): return True else: print "Please start docker desktop!" return False # below is for OSX. WIth win, just "docker ps" cmd = "/usr/local/bin/docker ps" if checkDockerRunning( cmd ): print "Docker running" else: print "Docker not running"
JAVADOCS
- 3D ImageJ Suite
- JAVADOC (2019 version, deprecated)
- MCIB3D Javadoc (2022 version)
- 3D Viewer JAVADOC
- MultistackReg JAVADOC
Discussions?
I closed the discussion interface below, as it became the target of spam server. Please post your comments / questions to twitter (@cmci_).