User Tools

Site Tools


Sidebar

Top
Seminar
Courses
Textbooks
Documents
Downloads (-2016)
Downloads (2016-)
Weblog
RSS aggregates
Discussions
Archives


EMBL BioImage Data Analysis

EuBIAS

NEUBIAS

—- Contact
CMCI Alumni
ALMF
EMBL Heidelberg
EMBL Intranet


Popularity Ranking


Timeline of @cmci_

cmci_ avatar

RT @jytinevez: LimeSeg on bioRXiv: LimeSeg: A coarsed-grained lipid membrane simulation for 3D image segmentation https://t.co/jECl7deOVG
About 9 hours, 14 mins ago by: Kota Miura (@cmci_)

cmci_ avatar

Impressive and swift moderation @helenajambor !
About 2 days, 14 hours ago by: Kota Miura (@cmci_)

cmci_ avatar

RT @LuisDVerde: Now available as a #ggplot2 geom thanks to @naupakaz https://t.co/zOaMWvzd8k https://t.co/AXYBCeGyw6
About 2 days, 14 hours ago by: Kota Miura (@cmci_)

cmci_ avatar

RT @helenajambor: awesome, within 2 days .@naupakaz made a code publicly available for anyone wanting to make the half-and-half-plot FYI @…
About 2 days, 14 hours ago by: Kota Miura (@cmci_)

cmci_ avatar

RT @dgaboriau: Thread on data visualisation: ggplots, boxplots and violin plots https://t.co/QZE7xQtaa3
About 2 days, 19 hours ago by: Kota Miura (@cmci_)

cmci_ avatar

RT @christlet: SUSHI from Valentin Nāgerl lab allows super-resolution microscopy of neuronal morphology by STED imaging of extracellular sp…
About 2 days, 23 hours ago by: Kota Miura (@cmci_)
documents:121019htm

2012 EMBO High-throughput Microscopy Practical Course

Dates: 2012.10.15-20 Place: ATC, EMBL Heidelberg

    1. With Andrea Boni @ Ellenberg Lab
    2. Abstract: The students will learn basics of image analysis of time lapse data. We will first go through preprocessing steps: filtering, noise reduction and background subtraction. We then move on to image thresholding and segmentation techniques, which allow us to objectively define region of interest (ROI) where the temporal dynamics of signal intensity are measured. Automation is an esseitial aspect in highthroughput imaging. In this session, students will be guided to learn how to automate the imaging processing steps that we went through manually. Scripting is necessary for automation. For this reason, a brief introduction to code ImageJ macro will be provided and students will learn to write a short macro that processes raw data and outputs results automatically.
  1. Demo script (written in Jython)
  2. Student ImageJ macro: example
documents/121019htm.txt · Last modified: 2016/05/24 05:46 (external edit)